Publications
Publications
2024
150. Effects of Nanowire Doping on Plasmon-Enhanced N2 Dissociation. Y. Wang, C. M. Aikens, J. Phys. Chem. A, 2024, 128, 3784-3793. https://pubs.acs.org/doi/10.1021/acs.jpca.3c08277
149. Temperature-Controlled Selective Formation of Silver Nanoclusters and Their Transformation to the Same Product. Z. Wang, Y. Wang, T.-Y. Zu, L. Li, C. M. Aikens, Z.-Y. Gao, M. Azam, C.-H. Tung, D. Sun, Angew. Chem. Int. Ed. 2024, 63, e202403464. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202403464
148. Effects of Static Electric Fields on the Excitations of Silver Nanowire Dimers. D. S. N. D. Samarasinghe, C. M. Aikens, J. Phys. Chem. A, 2024, 128, 3548-3556. https://pubs.acs.org/doi/10.1021/acs.jpca.4c00627
147. Chiral and Achiral Crystal Structures of Au25(PET)180 Reveal Effects of Ligand Rotational Isomerism on Optoelectronic Properties. G. U. Kuda-Singappulige, P. S. Window, C. A. Hosier, I. D. Anderson, C. M. Aikens, C. J. Ackerson. Chemistry – A European Journal, 2024, 30, e202202760 https://doi.org/10.1002/chem.202202760
146. Biomimetic Crystallization for Long-Pursued -COOH-functionalized Gold Nanocluster with Near-Infrared Phosphorescence. W.-D. Tian, W.-D. Si, S. Havenridge, C. Zhang, Z. Wang, C. M. Aikens, C.-H. Tung, D. Sun, Science Bulletin, 2024, 69, 40-48. DOI: 10.1016/j.scib.2023.11.014 https://www.sciencedirect.com/science/article/abs/pii/S2095927323007685
2023
145. Understanding the Ligand-Dependent Photoluminescent Mechanism in Small Alkynl-Protected Nanoclusters. S. Havenridge, C. M. Aikens, J. Phys. Chem. A, 2023, 127, 9932-9943. https://pubs.acs.org/doi/10.1021/acs.jpca.3c04644
144. Directing Intrinsic Chirality in Gold Nanoclusters: Preferential Formation of Stable Enantiopure Clusters in High Yield and Experimentally Unveiling the “Super” Chirality of Au144. V. Truttmann, A. Loxha, R. Banu, E. Pittenauer, S. Malola, M. F. Matus, Y. Wang, E. Ploetz, G. Rupprechter, T. Bürgi, H. Häkkinen, C. M. Aikens, N. Barrabés, ACS Nano 2023, 17, 20376-20386. https://pubs.acs.org/doi/10.1021/acsnano.3c06568
143. Symmetry-Dependent Dynamics in Au38(SC6H13)24 Revealed by Polarization-Dependent Two-Dimensional Electronic Spectroscopy. W. R. Jeffries, C. M. Aikens, K. L. Knappenberger, Jr. J. Phys. Chem. C 2023, 117, 19035-19043. https://pubs.acs.org/doi/10.1021/acs.jpcc.3c04832
142. Connectivity between Static Field and Continuous Wave Field Effects on Excitation-Induced H2 Activation. Y. Wang, C. M. Aikens. J. Phys. Chem. C. 2023, 127, 15375-15384. Invited article for Special Issue on “Hot Electrons in Catalysis” https://doi.org/10.1021/acs.jpcc.3c03686
141. Effects of Field Strength and Silver Nanowire Size on Plasmon-Enhanced N2 Dissociation. Y. Wang, C. M. Aikens. J. Phys. Chem. A. 2023, 127, 5609-5619 https://pubs.acs.org/doi/full/10.1021/acs.jpca.3c00120
140. Analytical Excited State Gradients for Time-Dependent Density Functional Theory Plus Tight Binding (TDDFT+TB). S. Havenridge, R. Rüger, C. M. Aikens. J. Chem. Phys., 2023, 158, 224103/1-11. https://pubs.aip.org/aip/jcp/article/158/22/224103/2895226
139. Theoretical Investigations on the Plasmon-Mediated Dissociation of Small Molecules in the Presence of Silver Atomic Wires. O. A. Hull, C. M. Aikens. J. Phys. Chem. A, 2023, 127, 2228-2241. Invited article for Special Issue on “Honoring Michael R. Berman”. https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.2c07531
138. A First Glance into Mixed Phosphine-Stibine Moieties as Protecting Ligands for Gold Nanoclusters. K. K. Singh, A. Bhattacharyya, S. Havenridge, M. Ghabin, H. Ausmann, M. A. Siegler, C. M. Aikens, A. Das. Nanoscale, 2023, 15, 6934-6940. https://pubs.rsc.org/en/content/articlehtml/2014/8p/d2nr05497c
2022
137. Effects of Diglyme on Au Nanocluster Formation: Mechanism, 1H NMR, and Bonding. Y. Wang, A. Li, J. Pinkerton, C. M. Aikens, J. Phys. Chem. A 2022, 126, 7598-7605. https://pubs.acs.org/doi/full/10.1021/acs.jpca.2c04218
136. Sulfide Boosting Near-Unity Photoluminescence Quantum Yield of Silver Nanocluster. S.-S. Zhang, S. Havenridge, C. Zhang, Z. Wang, L. Feng, Z.-Y. Gao, C. M. Aikens, C.-H. Tung, D. Sun, J. Am. Chem. Soc. 2022, 144, 18305-18314. https://pubs.acs.org/doi/10.1021/jacs.2c06093
135. Characterization of Pt-doping Effects on Nanoparticle Emission: A Theoretical Look at Au24Pt(SH)18 and Au24Pt(C3H7)18. S. Havenridge, K. L. D. M. Weerawardene, C. M. Aikens, Faraday Discuss. 2023, 242, 464-477. https://pubs.rsc.org/en/Content/ArticleLanding/2022/FD/D2FD00110A
134. An Ultrastable Thiolate/Diglyme Ligated Cluster: Au20(PET)15(DG)2. I. D. Anderson, Y. Wang, C. M. Aikens, C. L. Ackerson. Nanoscale, 2022, 14, 9134. https://pubs.rsc.org/en/content/articlelanding/2022/nr/d2nr02426h
133. An Ultrastable 155-Nuclei Silver Nanocluster Protected by Thiacalix[4]arene and Cyclohexanethiol for Photothermal Conversion. Z. Wang, F. Alkan, C. M. Aikens, M. Kurmoo, Z.-Y. Zhang, K.-P. Song, C.-H. Tung, D. Sun. Angew. Chem. Int. Ed. 2022, 61, e202206742/1-8. https://onlinelibrary.wiley.com/doi/10.1002/anie.202206742 (Selected as a “Hot Paper”)
132. Time-Dependent Density Functional Theory Study of the Optical Properties of Tetrahedral Aluminum Nanoparticles. G.-T. Bae, C. M. Aikens. J. Comput. Chem. 2022, 43, 1033-1041. https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.26868
131. Plasmon-Induced Excitation Energy Transfer in Silver Nanoparticle Dimers: A Real-Time TDDFTB Investigation. Z. Liu, M. B. Oviedo, B. M. Wong, C. M. Aikens. J. Chem. Phys. 2022, 156, 154705. https://aip.scitation.org/doi/10.1063/5.0082960
130. Crystal Structure and Optical Properties of a Chiral Mixed Thiolate/Stibine-Protected Au18 Cluster. J. B. Patty, S. Havenridge, D. Tietje-Mckinney, M. A. Siegler, K. K. Singh, R. H. Hosseini, M. Ghabin, C. M. Aikens, A. Das J. Am. Chem. Soc. 2022, 144, 478-484. https://pubs.acs.org/doi/10.1021/jacs.1c10778
2021
129. Excited-State Absorption in Silver Nanoclusters. G. U. Kuda-Singappulige, C. M. Aikens. J. Phys. Chem. C, 2021, 125, 24996-25006. https://pubs.acs.org/doi/10.1021/acs.jpcc.1c05054
128. Theoretical Insights into Excitation-Induced Oxygen Activation on a Tetrahedral Ag8 Cluster. G. U. Kuda-Singappulige, C. M. Aikens. J. Phys. Chem. A, 2021, 125, 9450-9458. https://pubs.acs.org/doi/10.1021/acs.jpca.1c05129
127. Deciphering the Dual Emission in the Photoluminescence of Au14Cd(SR)12: A Theoretical Study using TDDFT and TDDFT+TB. S. Havenridge, C. M. Aikens. J. Chem. Phys. 2021, 155, 074302/1-8. https://aip.scitation.org/doi/10.1063/5.0057079
126. Toward Quantitative Electronic Structure in Small Gold Nanoparticles. J. W. Fagan, K. L. D. M. Weerawardene, A. Cirri, C. M. Aikens, C. J. Johnson. J. Chem. Phys. 2021, 155, 014301/1-8. https://aip.scitation.org/doi/full/10.1063/5.0055210
125. Impact of Ligands on Structural and Optical Properties of Ag29 Nanoclusters. Y. Zeng, S. Havenridge, M. Gharib, Ananya Baksi, K. L. D. M. Weerawardene, A. R. Ziefuß, C. Strelow, C. Rehbock, A. Mews, S. Barcikowski, M. M. Kappes, W. J. Parak, C. M. Aikens, I. Chakraborty. J. Am. Chem. Soc. 2021, 143, 9405-9414. https://pubs.acs.org/doi/abs/10.1021/jacs.1c01799
124. Real-Time Electron Dynamics Study of Plasmon-Mediated Photocatalysis on an Icosahedral Al13 - Nanocluster. P. Pandeya, C. M. Aikens, J. Phys. Chem. A, 2021, 125, 4847-4860. https://pubs.acs.org/doi/abs/10.1021/acs.jpca.1c02924
123. Understanding the Effect of Symmetry Breaking on Plasmon Coupling from TDDFT. F. Alkan, C. M. Aikens. J. Phys. Chem. C, 2021, 125, 12198-12206. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.1c02707
122. Nonradiative Relaxation Dynamics in the [Au25-n Ag n (SH)18]-1 (n = 1, 12, 25) Thiolate-Protected Nanoclusters. P. Pandeya, R. Senanayake, C. M. Aikens. J. Chem. Phys. 2021, 154, 184303/1-12. https://aip.scitation.org/doi/10.1063/5.0045590
121. A 34-Electron Superatom Ag78 Cluster with Regioselective Ternary Ligands Shells and Its 2D Rhombic Superlattice Assembly. W.-J. Zhang, Z. Liu, K.-P. Song, C. M. Aikens, S.-S. Zhang, Z. Wang, C.-H. Tung, D. Sun. Angew. Chem. Int. Ed., 2021, 60, 4231-4237. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.202013681 Selected as a “Very Important Paper”
2020
120. Insights into the Metal-Exchange Synthesis of MAg24(SR)18 (M = Ni, Pd, Pt) Nanoclusters. M. Kim, K. L. D. M. Weerawardene, W. Choi, S. M. Han, J. Paik, Y. Kim, M.-G. Choi, C. M. Aikens, D. Lee. Chem. Mater. 2020, 32, 10216-10226. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.0c03994
119. Analysis and Visualization of Energy Densities. II. Insights from Linear-Response Time-Dependent Density Functional Theory Calculations. Z. Pei, J. Yang, J. Deng, Y. Mao, Q. Wu, Z. Yang, B. Wang, C. M. Aikens, W. Liang, Y. Shao. Phys. Chem. Chem. Phys., 2020, 22, 26852-26864. https://pubs.rsc.org/en/content/articlelanding/2020/CP/D0CP04207B#!divAbstract
118. Analysis and Visualization of Energy Densities. I. Insights from Real-Time Time-Dependent Density Functional Theory Simulations. J. Yang, Z. Pei, J. Deng, Y. Mao, Q. Wu, Z. Yang, B. Wang, C. M. Aikens, W. Liang, Y. Shao. Phys. Chem. Chem. Phys., 2020, 22, 26838-26851. https://pubs.rsc.org/en/content/articlelanding/2020/CP/D0CP04206D#!divAbstract
117. Ultrafast Nonradiative Decay of a Dipolar-Like State in Naphthalene. G. U. Kuda-Singappulige, A. Wildman, D. B. Lingerfelt, X. Li, C. M. Aikens, J. Phys. Chem. A, 2020, 124, 9729-9737. https://pubs.acs.org/doi/10.1021/acs.jpca.0c09564
116. TD-DFTB Study of Optical Properties of Silver Nanoparticle Homodimers and Heterodimers. Z. Liu, F. Alkan, C. M. Aikens, J. Chem. Phys., 2020, 153, 144711/1-10. https://aip.scitation.org/doi/10.1063/5.0025672
115. Electronic Structure and Nonadiabatic Dynamics of Atomic Silver Nanowire-N2 Systems. O. Hull, D. B. Lingerfelt, X. Li, C. M. Aikens, J. Phys. Chem. C, 2020, 124, 20834-20845. Invited Article for Special Issue on “Metal Clusters, Nanoparticles, and the Physical Chemistry of Catalysis” https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02979
114. Ultrafast Nonlinear Plasmon Decay Processes in Silver Nanoclusters. G. U. Kuda-Singappulige, D. B. Lingerfelt, X. Li, C. M. Aikens, J. Phys. Chem. C, 2020, 124, 20477-20487. https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03160
113. A Topological Isomer of the Au25(SR)18 - Nanocluster. M. F. Matus, S. Malola, E. Kinder Bonilla, B. M. Barngrover, C. M. Aikens, H. Häkkinen, Chem. Commun., 2020, 56, 8087-8090. https://pubs.rsc.org/en/content/articlelanding/2020/cc/d0cc03334k#!divAbstract
112. Theoretical Analysis of Optical Absorption Spectra of Parallel Nanowire Dimers and Dolmen Trimers. P. Pandeya, C. M. Aikens, J. Phys. Chem. C, 2020, 124, 13495-13507. https://pubs.acs.org/doi/10.1021/acs.jpcc.0c04419
111. Polymorphism in Atomically Precise Cu23 Nanocluster Incorporating Tetrahedral [Cu4]0 Kernel. B.-L. Han, Z. Liu, L. Feng, Z. Wang, R. Gupta, C. M. Aikens, C.-H. Tung, D. Sun, J. Am. Chem. Soc., 2020, 142, 5834-5841. https://pubs.acs.org/doi/10.1021/jacs.0c01053
110. Electron Relaxation Dynamics in [Au25(SR)18]-1 (R = CH3, C2H5, C3H7, MPA, PET) Thiolate-Protected Nanoclusters. R. D. Senanayake, C. M. Aikens, Phys. Chem. Chem. Phys., 2020, 22, 5272-5285. https://pubs.rsc.org/en/content/articlelanding/2020/cp/c9cp04039k#!divAbstract
2019
109. Luminescence and Electron Dynamics in Atomically Precise Nanoclusters with 8 Superatomic Electrons. K. L. D. M. Weerawardene, P. Pandeya, M. Zhou, Y. Chen, R. Jin, and C. M. Aikens, J. Am. Chem. Soc., DOI: 10.1021/jacs.9b07626. https://pubs.acs.org/doi/10.1021/jacs.9b07626
108. Geometrical and Electronic Structure, Stability, and Optical Absorption Spectra Comparisons between Thiolate- and Chloride-Stabilized Gold Nanoclusters. G. U. Kuda-Singappulige and C. M. Aikens, J. Phys. Chem. A, DOI: 10.1021/acs.jpca.9b06598. https://pubs.acs.org/doi/abs/10.1021/acs.jpca.9b06598
107. Understanding Plasmon Coupling in Nanoparticle Dimers using Molecular Orbitals and Configuration Interaction. F. Alkan and C. M. Aikens, Phys. Chem. Chem. Phys., 2019, 21, 23065-23075. https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp03890f
106. Theoretical Investigation of Relaxation Dynamics in the Au18(SH)14 Thiolate-Protected Gold Nanocluster. R. D. Senanayake, C. M. Aikens, J. Chem. Phys. 2019, 151, 094702/1-10. https://aip.scitation.org/doi/full/10.1063/1.5116902
105. Theoretical Investigation of Water Oxidation Mechanism on Pure Manganese and Ca-doped Bimetal Oxide Complexes. K. L. D. M. Weerawardene, C. M. Aikens, J. Phys. Chem. A, 2019, 123, 6152-6159. https://pubs.acs.org/doi/10.1021/acs.jpca.9b02652
104. Real-time TDDFT Investigation of Optical Absorption in Gold Nanowires. R. D. Senanayake, D. B. Lingerfelt, G. U. Kuda-Singappulige, X. Li, C. M. Aikens, J. Phys. Chem. C, 2019, 123, 14734-14745. https://pubs.acs.org/doi/10.1021/acs.jpcc.9b00296
103. Chiral Noble Metal Nanoparticles and Nanostructures. N. V. Karimova, C. M. Aikens, Particle and Particle Systems Characterizations, 2019, 36, 1900043/1-21. Invited review for a special issue on Nanoscale Chirality. https://onlinelibrary.wiley.com/doi/epdf/10.1002/ppsc.201900043
102. Understanding the Effect of Doping on Energetics and Electronic Structure for Au25, Ag25, and Au38 Clusters. F. Alkan, P. Pandeya, C. M. Aikens, J. Phys. Chem. C, 2019, 123, 9516-9527. https://pubs.acs.org/doi/10.1021/acs.jpcc.9b00065
101. [Ag48(CΞC t Bu)20(CrO4)7]: An Atomically Precise Silver Nanocluster Co-protected by Inorganic and Organic Ligands. S.-S. Zhang, F. Alkan, H.-F. Su, C. M. Aikens, C.-H. Tung, and D. Sun, J. Am. Chem. Soc., 2019, 141, 4460-4467. DOI: 10.1021/jacs.9b00703 https://pubs.acs.org/doi/abs/10.1021/jacs.9b00703
100. [Au18(dppm)6Cl4]4+: Phosphine-Protected Gold Nanocluster with Rich Charge States. S.-S. Zhang, R. D. Senanayake, Q.-Q. Zhao, H.-F. Su, C. M. Aikens, X.-P. Wang, C.-H. Tung, D. Sun, and L.-S. Zheng, Dalton Trans., 2019, 48, 3635-3640. DOI: 10.1039/C9DT00042A https://pubs.rsc.org/en/content/articlepdf/2019/dt/c9dt00042a
2018
99. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically-Precise Thiolate-Stabilized Noble Metal Nanoparticles. C. M. Aikens, Acc. Chem. Res., 2018, 51, 3065-3073. (Invited article for Special Issue on “Toward Atomic Precision in Nanoscience”) https://pubs.acs.org/doi/10.1021/acs.accounts.8b00364
98. Comparison and Convergence of Optical Absorption Spectra of Noble Metal Nanoparticles Computed using Linear-Response and Real-Time Time-Dependent Density Functional Theories. K. L. D. M. Weerawardene, C. M. Aikens, Comput. Theor. Chem., 2018, 1146, 27-36. https://doi.org/10.1016/j.comptc.2018.11.005
97. Different Silver Nanoparticles in One Crystal: Ag210( i PrPhS)71(Ph3P)5Cl and Ag211( i PrPhS)71(Ph3P)6Cl. J.-Y. Liu, F. Alkan, Z. Wang, Z. Zhang, M. Kurmoo, Z. Yan, Q.-Q. Zhao, C. M. Aikens, C.-H. Tung, D. Sun, Angew. Chem. Int. Ed., 2019, 58, 195-199. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201810772
96. Theoretical Investigation of Relaxation Dynamics in Au38(SH)24 Thiolate-Protected Gold Nanocluster. R. D. Senanayake, E. B. Guidez, A. J. Neukirch, O. V. Prezhdo, C. M. Aikens, J. Phys. Chem. C, 2018, 122, 16380-16388. https://pubs.acs.org/doi/10.1021/acs.jpcc.8b03595
95. TD-DFT and TD-DFTB Investigation of the Optical Properties and Electronic Structure of Silver Nanorods and Nanorod Dimers. F. Alkan, C. M. Aikens, J. Phys. Chem. C, 2018, 122, 23639-23650 https://pubs.acs.org/doi/10.1021/acs.jpcc.8b05196
Selected for “ACS Editor’s Choice”. Invited for Cover Art (https://pubs.acs.org/toc/jpccck/122/41)
94. Chiroptical Activity in BINAP- and DIOP-Stabilized Octa- and Undecagold Clusters. N. V. Karimova, C. M. Aikens, J. Phys. Chem. C, 2018, 122, 11051-11065. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b12264
93. Anisotropic Polarizability-Induced Plasmon Transfer. G. Donati, D. B. Lingerfelt, C. M. Aikens, X. Li, J. Phys. Chem. C, 2018, 122, 10621-10626. https://pubs.acs.org/doi/10.1021/acs.jpcc.8b02425
92. Connections Between Theory and Experiment for Gold and Silver Nanoclusters. K. L. D. M. Weerawardene, H. Häkkinen, C. M. Aikens, Annual Review of Physical Chemistry, 2018. (Invited article) link to eprint PDF https://www.annualreviews.org/doi/10.1146/annurev-physchem-052516-050932
91. Diphosphine-Protected Ultrasmall Gold Nanoclusters: Opened Icosahedral Au13 and Heart-Shaped Au8 Clusters. S.-S. Zhang, L. Feng, R. D. Senanayake, C. M. Aikens, X.-P. Wang, Q.-Q. Zhao, C.-H. Tung, D. Sun, Chem. Sci. 2018, 9, 1251-1258. http://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc03566g#!divAbstract
90. Origin of Photoluminescence of Ag25(SR)18 - Nanoparticles: Ligand and Doping Effect. K. L D. M. Weerawardene, C. M. Aikens, J. Phys. Chem. C, 2018, 122, 2440-2447. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b11706
2017
89. Relativistic DFT Investigation of Electronic Structure Effects Arising from Doping the Au25 Nanocluster with Transition Metals. F. Alkan, A. Muñoz-Castro, C. M. Aikens, Nanoscale, 2017, 9, 15825-15834. http://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr05214f
88. Optical Properties of Small Gold Clusters Au8L8 2+ (L = PH3, PPh3): Magnetic Circular Dichroism Spectra. N. V. Karimova, C. M. Aikens, J. Phys. Chem. C, 2017, 121, 19478-19489. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b05630
87. Molecular Vibration Induced Plasmon Decay. G. Donati, D. B. Lingerfelt, C. M. Aikens, X. Li, J. Phys. Chem. C, 2017, 121, 15368-15374. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b04451
86. Photoluminescence Origin of Au38(SR)24 and Au22(SR)18 Nanoparticles: A Theoretical Perspective. K. L. D. M. Weerawardene, E. B. Guidez, C. M. Aikens, J. Phys. Chem. C, 2017, 121, 15416-15423. http://pubs.acs.org/doi/10.1021/acs.jpcc.7b01958
85. Density Functional Theory Investigation of the Interactions of Silver Nanoclusters with Guanine. B. B. Dale, R. D. Senanayake, C. M. Aikens, APL Materials, 2017, 5, 053102. (Special issue on Few-Atom Metal Nanoclusters and their Biological Applications) http://aip.scitation.org/doi/abs/10.1063/1.4977795
2016
84. Time Dependent Density Functional Theory Study of Magnetic Circular Dichroism Spectra of Gold Clusters Au9(PH3)8 3+ and Au9(PPh3)8 3+. N. V. Karimova, C. M. Aikens, J. Phys. Chem. A, 2016, 120, 9625-9635. (Special Issue in honor of Mark S. Gordon). http://pubs.acs.org/doi/abs/10.1021/acs.jpca.6b10063
83. Theoretical Investigation of Electron and Nuclear Dynamics in the [Au25(SH)18]-1 Thiolate-Protected Gold Nanocluster. R. Senanayake, A. V. Akimov, C. M. Aikens, J. Phys. Chem. C, 2017, 121, 10653-10662. (Special Issue for ISSPIC XVIII: International Symposium on Small Particles and Inorganic Clusters 2016). http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b09731
82. Gold-Doped Silver Nanocluster [Au3Ag38(SCH2Ph)24X5]2- (X= Cl or Br). Z. Wang, R. Senanayake, C. M. Aikens, W. Chen, C. Tung, D. Sun, Nanoscale, 2016, 8, 18905-18911. Chosen for “2016 Nanoscale HOT Article Collection” based on referee reviews. http://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr06615a#!divAbstract
81. Theoretical Investigation of Water Oxidation Catalysis by a Model Manganese Cubane Complex. A. Fernando, C. M. Aikens, J. Phys. Chem. C, 2016, 120, 21148-21161. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b03029
80. Theoretical Insights into the Origin of Photoluminescence of Au25(SR)18 - Nanoparticles. K. L. D. M. Weerawardene, C. M. Aikens, J. Am. Chem. Soc., 2016, 138, 11202-11210. http://pubs.acs.org/doi/abs/10.1021/jacs.6b05293
79. Deciphering the Ligand Exchange Process on Thiolate Monolayer Protected Au38(SR)24 Nanoclusters. A. Fernando, C. M. Aikens, J. Phys. Chem. C, 2016, 120, 14948-14961. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b04516
78. Theoretical Investigations of Water Oxidation on Fully Saturated Mn2O3 and Mn2O4 Complexes. A. Fernando, T. Haddock, C. M. Aikens, J. Phys. Chem. A, 2016, 120, 2480-2492. http://pubs.acs.org/doi/abs/10.1021/acs.jpca.6b02280
77. Effect of Aliphatic versus Aromatic Ligands on the Structure and Optical Absorption of Au20(SR)16. K. L. D. M. Weerawardene, C. M. Aikens, J. Phys. Chem. C, 2016, 120, 8354-8363. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b01011
76. Insights from Theory and Experiment on the Photochromic spiro-Dihydropyrrolo-Pyridazine/Betaine System. A. Fernando, T. B. Shrestha, Y. Liu, A. P. Malalasekera, J. Yu, E. J. McLaurin, C. Turro, S. H. Bossmann, C. M. Aikens, J. Phys. Chem. A, 2016, 120, 875-883. http://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b10020
2015
75. Ab Initio Electronic Structure Study of a Model Water Splitting Dimer Complex. A. Fernando, C. M. Aikens, Phys. Chem. Chem. Phys., 2015, 17, 32443-32454. http://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C5CP04112K#!divAbstract
74. Time-Dependent Density Functional Theory Studies of Optical Properties of Au Nanoparticles: Octahedra, Truncated Octahedra, and Icosahedra. G.-T. Bae, C. M. Aikens, J. Phys. Chem. C, 2015, 119, 23127-23137. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b05978
73. Refined Insights in the Photochromic Spiro-Dihydroindolizine/Betaine System. A. Fernando, A. P. Malalasekera, J. Yu, T. B. Shrestha, E. J. McLaurin, S. H. Bossmann, C. M. Aikens, J. Phys. Chem. A, 2015, 119, 9621-9629. http://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b05262
72. Strong Tunable Visible Absorption Predicted for Polysilo-acenes using TDDFT Calculations. K. L. D. M. Weerawardene, C. M. Aikens, J. Phys. Chem. Lett., 2015, 6, 3341-3345. http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01446
71. Ligand Exchange Mechanism on Thiolate Monolayer Protected Au25(SR)18 Nanoclusters. A. Fernando, C. M. Aikens, J. Phys. Chem. C, 2015, 119, 20179-20187. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b06833
70. Water Splitting Processes on Mn4O4 and CaMn3O4 Model Cubane Systems. C. Lee, C. M. Aikens, J. Phys. Chem. A, 2015, 119, 9325-9337. http://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b03170
69. Optical Properties and Chirality. C. M. Aikens In Protected Metal Clusters: From Fundamentals to Applications, Vol. 9 Frontiers of Nanoscience, Elsevier, 2015, pp. 223-261. http://www.sciencedirect.com/science/article/pii/B9780081000861000099
68. TDDFT Investigation of the Electronic Structure and Chiroptical Properties of Planar and Helical Silver Nanowires. N. V. Karimova, C. M. Aikens, J. Phys. Chem. A, 2015, 119, 8163-8173. http://pubs.acs.org/doi/abs/10.1021/acs.jpca.5b03312
67. Synthesis and Characterization of Gallium-Doped CdSe Quantum Dots. H. Luo, C. Tuinenga, E. B. Guidez, C. Lewis, J. Shipman, S. Roy, C. M. Aikens, V. Chikan, J. Phys. Chem. C, 2015, 119, 10749-10757. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b01963
66. Reaction Pathways for Water Oxidation to Molecular Oxygen Mediated by Model Cobalt Oxide Dimer and Cubane Catalysts. A. Fernando, C. M. Aikens, J. Phys. Chem. C, 2015, 119, 11072-11085. (Invited Article for special issue on Current Trends in Clusters and Nanoparticles Conference) http://pubs.acs.org/doi/abs/10.1021/jp511805x Erratum: http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b01606
65. Time-Dependent Density Functional Theory Study of the Luminescence Properties of Gold Phosphine Thiolate Complexes. E. B. Guidez, C. M. Aikens, J. Phys. Chem. A, 2015, 119, 3337-3347. http://pubs.acs.org/doi/abs/10.1021/jp5104033
64. Real-time TDDFT Studies of Exciton Transfer and Decay in Silver Nanowire Arrays. B. Peng, D. Lingerfelt, F. Ding, C. M. Aikens, X. Li, J. Phys. Chem. C, 2015, 119, 6421-6427. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b00263
63. Theoretical Examination of Solvent and R Group Dependence in Gold Thiolate Nanoparticle Synthesis. S. M. Neidhart, B. M. Barngrover, C. M. Aikens, Phys. Chem. Chem. Phys., 2015, 17, 7676-7680. (Invited Article for special issue on Size Selected Clusters and Particles: From Physical Chemistry to Catalysis) http://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C4CP04314F#!divAbstract
62. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Clusters and Nanoparticles. A. Fernando, K. L. D. Weerawardene, N. Karimova, C. M. Aikens, Chem. Rev., 2015, 115, 6112-6216. (Invited Review Article for special issue on Calculations on Large Systems) http://pubs.acs.org/doi/abs/10.1021/cr500506r
61. Prediction of Non-radical Au(0)-containing Precursors in Gold Nanoparticle Growth Processes. B. M. Barngrover, T. J. Manges, C. M. Aikens, J. Phys. Chem. A, 2015, 119, 889-895. http://pubs.acs.org/doi/abs/10.1021/jp509676a
60. Sulfur-metal Complex on Cu(111) as a Candidate for Mass Transport Enhancement. H. Walen, D.-J. Liu, J. Oh, H. Lim, J. W. Evans, C. M. Aikens, Y. Kim, P. A. Thiel, Phys. Rev. B, 2015, 91, 045426/1-7. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.91.045426
2014
59. Au36(SPh)24 Nanomolecules: X-ray Crystal Structure, Optical Spectroscopy, Electrochemistry and Theoretical Analysis. P. Nimmala, S. Knoppe, V. Jupally, J. Delcamp, C. M. Aikens, A. Dass, J. Phys. Chem. B, 2014, 118, 14157-14167. http://pubs.acs.org/doi/abs/10.1021%2Fjp506508x
58. Quantum Mechanical Origin of the Plasmon: From Molecular Systems to Nanoparticles. E. B. Guidez, C. M. Aikens, Nanoscale, 2014, 6, 11512-11527. (Invited Feature Article) http://dx.doi.org/10.1039/c4nr02225d
57. Quantum Coherent Plasmon in Silver Nanowires: A Real-Time TDDFT Study. F. Ding, E. B. Guidez, C. M. Aikens, X. Li, J. Chem. Phys. 2014, 140, 244705/1-7. http://dx.doi.org/10.1063/1.4884388
56. Plasmon Resonance Analysis with Configuration Interaction. E. B. Guidez, C. M. Aikens, Phys. Chem. Chem. Phys. 2014, 16, 15501-15509. http://pubs.rsc.org/en/Content/ArticleLanding/2014/CP/c4cp01365d#!divAbstract
55. Chiral Electronic Transitions in Fluorescent Silver Clusters Stabilized by DNA. S. M. Swasey, N. Karimova, C. M. Aikens, D. E. Schultz, A. J. Simon, E. G. Gwinn, ACS Nano, 2014, 8, 6883-6892. http://pubs.acs.org/doi/abs/10.1021/nn5016067
54. Theoretical Investigation of Water Oxidation Processes on Small MnxTi2-xO4 (x = 0-2) Complexes. C. Lee, C. M. Aikens, J. Phys. Chem. A, 2014, 118, 8204-8221. (Invited article for the A. W. Castleman, Jr. Festschrift) http://pubs.acs.org/doi/abs/10.1021/jp501002x
53. Crystal Structure and Theoretical Analysis of Au25-xAgx(SCH2CH2Ph)18 -. C. Kumara, C. M. Aikens, A. Dass, J. Phys. Chem. Lett., 2014, 5, 461-466. http://pubs.acs.org/doi/abs/10.1021/jz402441d
52. Water Adsorption and Dissociation Processes on Small Mn-Doped TiO2 Complexes. C. Lee, C. M. Aikens, J. Phys. Chem. A, 2014 , 118, 598-605. http://pubs.acs.org/doi/abs/10.1021/jp410049j
2013
51. Helical Oxidovanadium(IV) Salen-Type Complexes: Synthesis, Characterisation and Catalytic Behaviour. S. Barman, S. Patil, J. Desper, C. M. Aikens, C. J. Levy, Eur. J. Inorg. Chem. 2013, 2013, 5708-5717. http://onlinelibrary.wiley.com/doi/10.1002/ejic.201300635/abstract
50. Improved ReaxFF Force Field Parameters for Au-S-C-H Systems. G.-T. Bae, C. M. Aikens, J. Phys. Chem. A, 2013 , 117, 10438-10446. http://pubs.acs.org/doi/abs/10.1021/jp405992m
49. Origin and TDDFT Benchmarking of the Plasmon Resonance in Acenes. E. B. Guidez, C. M. Aikens, J. Phys. Chem. C, 2013 , 117, 21466-21475. http://pubs.acs.org/doi/abs/10.1021/jp4059033
48. Raman Spectroscopy: The Effect of Field Gradient on SERS. C. M. Aikens, L. R. Madison, G. C. Schatz, Nature Photonics, 2013, 7, 508-510. http://www.nature.com/nphoton/journal/v7/n7/full/nphoton.2013.153.html
47. Oxidation of Gold Clusters by Thiols. B. M. Barngrover, C. M. Aikens, J. Phys. Chem. A, 2013 , 117, 5377-5384. http://pubs.acs.org/doi/abs/10.1021/jp403633a
46. Diameter Dependence of the Excitation Spectra of Silver and Gold Nanorods. E. B. Guidez, C. M. Aikens, J. Phys. Chem. C, 2013, 117, 12325-12336. http://pubs.acs.org/doi/abs/10.1021/jp4023103
45. Effects of Mn Doping on (TiO2) n (n = 2-5) Complexes. C. Lee, C. M. Aikens, Comput. Theor. Chem. 2013, 1013, 32-45. http://dx.doi.org/10.1016/j.comptc.2013.03.001
44. Theoretical Investigation of Surface Reactions of Lactic Acid on MgO Clusters. L. B. Pandey, C. M. Aikens, J. Phys. Chem. A, 2013 , 117, 765-770. http://pubs.acs.org/doi/abs/10.1021/jp309801b
2012
43. Effects of Silver Doping on the Geometric and Electronic Structure and Optical Absorption Spectra of the Au25-n Ag n (SH)18 - (n = 1, 2, 4, 6, 8, 10, 12) Bimetallic Nanoclusters. E. B. Guidez, V. Mäkinen, H. Häkkinen, C. M. Aikens, J. Phys. Chem. C, 2012, 116, 20617-20624. http://pubs.acs.org/doi/abs/10.1021/jp306885u
42. Dissociation Dynamics of Diatomic Molecules in Intense Laser Fields: A Scheme for the Selection of Relevant Adiabatic Potential Curves. M. Magrakvelidze, C. M. Aikens, and U. Thumm, Phys. Rev. A, 2012, 86, 023402 [9 pages]. http://pra.aps.org/abstract/PRA/v86/i2/e023402
41. TDDFT and CIS Studies of Optical Properties of Dimers of Silver Tetrahedra. G.-T. Bae, C. M. Aikens, J. Phys. Chem. A, 2012, 116, 8260-8269. http://pubs.acs.org/doi/abs/10.1021/jp305330e
40. The Golden Pathway to Thiolate-Stabilized Nanoparticles: Following the Formation of Gold(I) Thiolates from Gold(III) Chloride. B. M. Barngrover, C. M. Aikens, J. Am. Chem. Soc., 2012, 134, 12590-12595. http://pubs.acs.org/doi/abs/10.1021/ja303050s
39. Theoretical Analysis of the Optical Excitation Spectra of Silver and Gold Nanowires. E. B. Guidez, C. M. Aikens, Nanoscale, 2012, 4, 4190-4198. http://pubs.rsc.org/en/Content/ArticleLanding/2012/NR/C2NR30253E
38. Modeling Small Gold and Silver Nanoparticles with Electronic Structure Methods. C. M. Aikens, Molecular Simulation, 2012, 38, 607-614. (Invited article for special issue on New Developments in Molecular Simulation.) http://www.tandfonline.com/doi/abs/10.1080/08927022.2012.671522
37. TDDFT Studies of Optical Properties of Ag Nanoparticles: Octahedra, Truncated Octahedra and Icosahedra. G.-T. Bae, C. M. Aikens, J. Phys. Chem. C 2012, 116, 10356-10367. http://pubs.acs.org/doi/abs/10.1021/jp300789x
36. Formyloxyl Radical-Gold Nanoparticle Binding: A Theoretical Study. J. M. Hull, M. R. Provorse, C. M. Aikens, J. Phys. Chem. A, 2012, 116, 5445-5452. http://pubs.acs.org/doi/abs/10.1021/jp212284w
35. Development of a Charge-Perturbed Particle-in-a-Sphere Model for Nanoparticle Electronic Structure. E. B. Guidez, C. M. Aikens, Phys. Chem. Chem. Phys. 2012, 14, 4287-4295. http://pubs.rsc.org/en/content/articlelanding/2012/cp/c2cp23889f
34. Theoretical Investigation of the Electrochemical Mechanism of Water Splitting on a Titanium Oxide Cluster Model. L. B. Pandey, C. M. Aikens, J. Phys. Chem. A. 2012, 116, 526-535. http://pubs.acs.org/doi/abs/10.1021/jp207128a
33. Binding of Carboxylates to Gold Nanoparticles: A Theoretical Study of the Adsorption of Formate on Au20. M. R. Provorse, C. M. Aikens, Comput. Theor. Chem . 2012, 987, 16-21.(Invited article for special issue on Modeling in Materials Chemistry.) http://www.sciencedirect.com/science/article/pii/S2210271X11006025
2011
32. Incremental Binding Energies of Gold(I) and Silver(I) Thiolate Clusters. B. M. Barngrover, C. M. Aikens, J. Phys. Chem. A., 2011, 115, 11818-11823. http://pubs.acs.org/doi/full/10.1021/jp2061893
31. Electron and Hydride Addition to Gold(I) Thiolate Oligomers: Implications for Gold-Thiolate Nanoparticle Growth Mechanisms: B. M. Barngrover, C. M. Aikens, J. Phys. Chem. Lett. 2011, 2, 990-994. http://pubs.acs.org/doi/abs/10.1021/jz200310p
30. Density Functional Analysis of Geometries and Electronic Structures of Gold-Phosphine Clusters: The Case of Au4(PR3)4 2+ and Au4(m2-I)2(PR3)4. S. A. Ivanov, I. Arachchige, C. M. Aikens, J. Phys. Chem. A., 2011, 115, 8017-8031. http://pubs.acs.org/doi/full/10.1021/jp200346c
29. Initial Growth Mechanisms of Gold-Phosphine Clusters. E. B. Guidez, A. Hadley, C. M. Aikens, J. Phys. Chem. C. 2011, 115, 6305-6316. http://pubs.acs.org/doi/abs/10.1021/jp112388q
28. Northwestern University Initiative for Teaching NanoSciences (NUITNS): An Approach for Teaching Computational Chemistry to Engineering Undergraduate Students. T. Simeon, C. M. Aikens, B. Tejerina, G. C. Schatz, J. Chem. Ed., 2011, 88, 1079-1084. http://pubs.acs.org/doi/full/10.1021/ed101015a
27. Structure and Stability of (TiO2) n , (SiO2) n , and Mixed Ti m Si n -m O2n (n = 2-5, m = 1-(n-1)) Clusters. I. Bandyopadhyay, C. M. Aikens, J. Phys. Chem. A. 2011, 115, 868-879. http://pubs.acs.org/doi/full/10.1021/jp109412u
26. Perspective: Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters. C. M. Aikens, J. Phys. Chem. Lett. 2011, 2, 99-104. (Invited Perspective) http://pubs.acs.org/doi/abs/10.1021/jz101499g
2010
25. Geometric and Electronic Structure of Au25(SPhX)18 - (X = H, F, Cl, Br, CH3, and OCH3). C. M. Aikens, J. Phys. Chem. Lett., 2010, 1, 2594-2599. http://pubs.acs.org/doi/full/10.1021/jz1009828
24. TDDFT Investigation of Surface-Enhanced Raman Scattering of HCN and CN- on Ag20. K. E. Brewer, C. M. Aikens, J. Phys. Chem. A., 2010, 114, 8858-8863. (Invited article for Klaus Ruedenberg Festschrift.) http://pubs.acs.org/doi/full/10.1021/jp1025174
23. Chirality and Electronic Structure of the Thiolate-Protected Au38 Nanocluster. O. Lopez-Acevedo, H. Tsunoyama, T. Tsukuda, H. Häkkinen, C. M. Aikens, J. Am. Chem. Soc., 2010, 132, 8210-8218. (Featured in JACS Select) http://pubs.acs.org/doi/full/10.1021/ja102934q
22. Thiolate Ligand Exchange Mechanisms of Au1 and Subnanometer Gold Particle Au11. A. Hadley and C. M. Aikens, J. Phys. Chem. C, 2010, 114, 18134-18138. (Invited article for Protected Metallic Clusters, Quantum Wells and Metallic Nanocrystal Molecules.) http://pubs.acs.org/doi/abs/10.1021/jp911054e
21. Origin of Intense Chiroptical Effects in Undecagold Subnanometer Particles. M. R. Provorse, C. M. Aikens, J. Am. Chem. Soc., 2010, 132, 1302-1310. http://pubs.acs.org/doi/full/10.1021/ja906884m
2009
20. Effects of Core Distances, Solvent, Ligand, and Level of Theory on the TDDFT Optical Absorption Spectrum of the Thiolate-Protected Au25 Nanoparticle. C. M. Aikens, J. Phys. Chem. A, 2009, 113, 10811-10817. http://pubs.acs.org/doi/full/10.1021/jp9051853
19. Quantum Mechanical Examination of Optical Absorption Spectra of Silver Nanorod Dimers. J. Vincenot, C. M. Aikens, In “Advances in the Theory of Atomic and Molecular Systems”, Eds. P. Piecuch et al., Series: Progress in Theoretical Chemistry and Physics 20, Springer, 2009, pp. 253-264. http://www.springerlink.com/content/978-90-481-2984-3
18. Silver Nanoparticles with Broad Multi-Band Linear Optical Absorption. O. Bakr, V. Amendola, C. M. Aikens, W. Wenseleers, R. Lee, L. Dal Negro, G. C. Schatz, F. Stellacci, Angew. Chem. Int. Ed., 2009, 48, 5921-5926. http://www3.interscience.wiley.com/journal/122498778/abstract
17. A Charge-Dipole Interaction Model for the Frequency-Dependent Polarizability of Silver Clusters. A. Mayer, A. L. González, C. M. Aikens, G. C. Schatz, Nanotechnology, 2009, 20, 195204 (10 pp.). [Featured at http://nanotechweb.org/cws/article/lab/39322] http://www.iop.org/EJ/abstract/0957-4484/20/19/195204
16. Electronic Structure and TDDFT Optical Absorption Spectra of Silver Nanorods. H. E. Johnson, C. M. Aikens, J. Phys. Chem. A, 2009, 113, 4445-4450. http://pubs.acs.org/doi/full/10.1021/jp811075u
15. Reversible Switching of Magnetism in Thiolate-Protected Au25 Superatoms. M. Zhu, C. M. Aikens, M. P. Hendrich, R. Gupta, H. Qian,G. C. Schatz, R. Jin, J. Am. Chem. Soc., 2009, 131, 2490-2492. http://pubs.acs.org/doi/full/10.1021/ja809157f
2008
14. Origin of Discrete Optical Absorption Spectra of M25(SH)18 - Nanoparticles (M = Au, Ag). C. M. Aikens, J. Phys. Chem. C, 2008, 112, 19797-19800. http://pubs.acs.org/doi/full/10.1021/jp8090914
13. Correlating the Crystal Structure of a Thiol-Protected Au25 Cluster and Optical Properties. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am. Chem. Soc., 2008, 130, 5883-5885. http://pubs.acs.org/doi/full/10.1021/ja801173r
12. From Discrete Electronic States to Plasmons: TDDFT Optical Absorption Properties of Ag n (n = 10, 20, 35, 56, 84, 120) Tetrahedral Clusters. C. M. Aikens, S. Li, G. C. Schatz, J. Phys. Chem. C, 2008, 112, 11272-11279. http://pubs.acs.org/doi/full/10.1021/jp802707r
Prior to Kansas State
11. Electronic structure methods for studying Surface-Enhanced Raman Scattering. L. Jensen, C. M. Aikens, G. C. Schatz, Chem. Soc. Rev., 2008, 37, 1061-1073. http://www.rsc.org/Publishing/Journals/CS/article.asp?doi=b706023h
10. Time-dependent Density Functional Theory Examination of the Effects of Ligand Adsorption on Metal Nanoparticles. C. M. Aikens, G. C. Schatz, In "Nanoparticles: Synthesis, Stabilization, Passivation and Functionalization", Eds., R. Nagarajan and T. A. Hatton, ACS Symposium Series 996, American Chemical Society, Washington DC, 2008, Chapter 9.
9. TDDFT Studies of Absorption and SERS Spectra of Pyridine Interacting with Au20. C. M. Aikens, G. C. Schatz, J. Phys. Chem. A, 2006, 110, 13317-13324. http://pubs.acs.org/doi/full/10.1021/jp065206m
8. Incremental Solvation of Nonionized and Zwitterionic Glycine. C. M. Aikens, M. S. Gordon, J. Am. Chem. Soc., 2006, 128, 12835-12850. http://pubs.acs.org/doi/full/10.1021/ja062842p
7. Scalable Implementation of Analytic Gradients for Second-Order Z-Averaged Perturbation Theory Using the Distributed Data Interface. C. M. Aikens, G. D. Fletcher, M. W. Schmidt, M. S. Gordon, J. Chem. Phys., 2006, 124, 014107 (14 pp.). http://link.aip.org/link/?JCPSA6/124/014107/1
6. Influence of Multi-Atom Bridging Ligands on the Electronic Structure and Magnetic Properties of Homodinuclear Titanium Molecules. C. M. Aikens, M. S. Gordon, J. Phys. Chem. A, 2005, 109, 11885-11901. http://pubs.acs.org/doi/full/10.1021/jp058191l
5. Parallel Unrestricted MP2 Analytic Gradients Using the Distributed Data Interface. C. M. Aikens, M. S. Gordon, J. Phys. Chem. A, 2004, 108, 3103-3110. http://pubs.acs.org/doi/full/10.1021/jp031142t
4. Feature Article: A Derivation of the Frozen-Orbital Unrestricted Open-Shell and Restricted Closed-Shell Second-Order Perturbation Theory Analytic Gradient Expressions. C. M. Aikens, S. P. Webb, R. L. Bell, G. D. Fletcher, M. W. Schmidt, M. S. Gordon, Theor. Chem. Acc., 2003, 110, 233-253. http://www.springerlink.com/content/4n7hcpqlg0u7br06/?p=1dc3fe01c8424a8bb7b8edb4250507fb&pi=0
3. Electronic Structure and Magnetic Properties of Y2Ti(μ-X)2TiY2 (X, Y = H, F, Cl, Br) Isomers. C. M. Aikens, M. S. Gordon, J. Phys. Chem. A, 2003, 107, 104-114. http://pubs.acs.org/doi/full/10.1021/jp021537x
2. Hydrogenation of Iron(II) Cationic Complexes of Naphthalene and Methyl-Substituted Naphthalenes. D. S. Masterson, C. M. Tratz, B. A. Behrens, D. T. Glatzhofer, Organometallics, 2000, 19, 244-249. http://pubs.acs.org/doi/full/10.1021/om990738t
1. Improved Coefficients for the Scaling All Correlation and Multi-Coefficient Correlation Methods. C. M. Tratz, P. L. Fast, D. G. Truhlar, PhysChemComm, 1999, 2, 70-79. http://www.rsc.org/Publishing/Journals/QU/article.asp?doi=a908207g