The Sues Research Laboratory

Publications

22) Highly Active Unsymmetric Co-facial “Salixpyrrole” Hydrogen Evolution Catalysts: Two Metals are Better than One. Somachandra, M. S., Averkiev, B., Sues, P. E. Inorganic Chemistry 2024, Accepted.

21) The Hydrogen Evolution Reaction: Using Molecular Design in Transition Metal Complexes to Control Catalytic Microenvironments on Electrode Surfaces. Trowbridge, L.; Sues, P. E. ChemCatChem 2024, Accepted. DOI: https://doi.org/10.1002/cctc.202400637.

20) Electrocatalytic Hydrogen Evolution using a Nickel-based Calixpyrrole Complex: Controlling the Secondary Coordination Sphere on an Electrode Surface. Trowbridge, L.; Averkiev, B.; Sues, P. E. Chemistry - A European Journal 2023, 29, e202301920. DOI: 10.1002/chem.202301920.

19) Ruthenium Phosphinimine Complex as a Fast-Initiating Olefin Metathesis Catalyst with Competing Catalytic Cycles. Saha, S.; Averkiev, B.; Sues, P. E. Organometallics 2022, 41, 2879-2890. DOI: 10.1021/acs.organomet.2c00487.

#TOCoftheWeek

18) Palladium Complexes Bearing Calixpyrrole Ligands with Pendant Hydrogen Bond Donors: Synthesis, Structural Characterization, Electrochemistry and Dihydrogen Evolution. Trowbridge, L.; Averkiev, B.; Sues, P. E. Polyhedron 2022, 225, 116046. DOI: 10.1016/j.poly.2022.116046.

17) Ring-Opening Polymerization of ε-Caprolactone Utilizing Aluminum Alkyl Complexes Bearing Dianionic Scorpionate Ligands. Cooper, E. N.; Averkiev, B.; Day, V. W.; Sues, P. E. Organometallics 2021, 40, 3185-3200. DOI: 10.1021/acs.organomet.1c00400.

16) Evaluation of Several Molybdenum and Ruthenium Catalysts for the Metathesis Homocoupling of 3-Methyl-1-Butene. Sues, P. E.; Bukhryakov, K. V.; Schrock, R. R. Helv. Chim. Acta 2017, 100, e1700181.

15) Ketone Asymmetric Hydrogenation Catalyzed by P-NH-P’ Pincer Iron Catalysts: an Experimental and Computational Study. § Sonnenberg, J. F.; § Wan, K. Y.; § Sues, P. E.; Morris, R. H. ACS Catal. 2017, 7, 316-326. §All authors contributed equally.

14) Tungsten and Molybdenum Alkylidene Complexes That Contain a 2-Pyridyl Phenoxide Ligand. Sues, P. E.; John, J. M.; Bukhryakov, K. V.; Schrock, R. R.; Müller, P. Organometallics 2016, 35, 3587-3593.

13) Molybdenum and Tungsten Alkylidene and Metallacyclobutane Complexes that Contain a Dianionic Biphenolate Pincer Ligand. Sues, P. E.; John, J. M.; Schrock, R. R.; Müller, P. Organometallics 2016, 35, 758–761.

12) Exploring the Decomposition Pathways of Highly Active Iron Tetradentate Asymmetric Transfer Hydrogenation Catalysts. Lagaditis, P. O.; Sues, P. E.; Lough, A. J.; Morris, R. H. Dalton Trans. 2015, 44, 12119–12127.

11) Template Effect and Ligand Substitution Methods for the Synthesis of Iron Catalysts: A Two–Part Experiment for Inorganic Chemistry. Sues, P. E.; Cai, K.; McIntosh, D. F.; Morris, R. H. J. Chem. Ed. 2014, 92, 378–381.

10) Bromo{N, N'-bis[2-(diphenylphosphino)ethanediylidene] ethylenediamine}(para-toluenesulfonylmethyl-isocyanide)iron(II) tetraphenylborate. Sues, P. E.; Lough, A. J.; Morris, R. H. Acta Crystallogr. E 2014, 70, m144.

9) Rational development of iron catalysts for asymmetric transfer hydrogenation. Sues, P. E.; Demmans, K. Z.; Morris, R. H. Dalton Trans. 2014, 43. 7650–7667.

8) A Sulphur Mimic of 1,1-Bis(diphenylphosphino)methane: A New Ligand Opens Up. Sues, P. E.; Lough, A. J.; Morris, R. H. Chem. Commun. 2014, 50, 4707–4710.

7) Ligand-based Molecular Recognition and Oxygen Splitting: An Endo Epoxide Ending. Sues, P. E.; Forbes, M. W.; Lough, A. J.; Morris, R. H. Dalton Trans. 2014, 43, 4137–4145.

6) Reactivity of Phosphido Species Generated Through the Deprotonation of a Tripodal Phosphine Ligand and Implications for Hydrophosphination. Sues, P. E.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2014, 136 , 4746–4760.

5) Iron(II) Complexes Containing Unsymmetrical P-N-Pʹ Pincer Ligands for the Asymmetric Hydrogenation of Ketones and Imines. Lagaditis, P. O.; Sues, P. E.; Sonnenberg, J. S.; Wan, K.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2014, 136, 1367–1380.

4) Flexible Syntheses of Tripodal Phosphine Ligands 1,1,2-tris(diarylphosphino)ethane and their Ruthenium η5-CMe5 Complexes. Sues, P. E.; Lough, A. J.; Morris, R. H. Organometallics 2012, 31, 6589–6594.

3) Synthesis, Characterization, and Activity of Yttrium(III) Nitrate Complexes Bearing Tripodal Phosphine Oxide, and Mixed Phosphine–Phosphine Oxide Ligands. Sues, P. E.; Lough, A. J.; Morris, R. H. Inorg. Chem. 2012, 51, 9322–9332.

2) Stereoelectronic Factors in Iron Catalysis: Synthesis and Characterization of Aryl-Substituted Iron(II) Carbonyl P–N–N–P Complexes and Their Use in the Asymmetric Transfer Hydrogenation of Ketones. Sues, P. E.; Lough, A. J.; Morris, R. H. Organometallics 2011, 30, 4418–4431.

1) New cyclic phosphonium salts derived from the reaction of phosphine-aldehydes with acid. Mikhailine, A. A.; Lagaditis, P. O.; Sues, P. E.; Lough, A. J.; Morris, R. H. J. Organomet. Chem. 2010, 695, 1824–1830.