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Abstract

This paper provides a solution for the equity premium puzzle. We modify

the standard constant relative risk aversion utility function by assuming that the

representative consumer also has a preference for consumption predictability.

While keeping the conditional mean of the stochastic discount factor close to

one, this feature not only reinforces consumption smoothing, but it also results

in large increases in the variability of the stochastic discount factor which is

crucial for this solution to the puzzle. The large increase in variability for the

stochastic discount factor in the modified model is primarily determined by large,

realized consumption forecast errors. Although these oversized forecast errors

arise infrequently, when they do arise, they result in very high aversion to risk

and enhanced interest in smoothing consumption.
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1 Introduction

Since Mehra and Prescott (1985) pointed out the difficulties of standard consumption-

based intertemporal economic models for explaining key financial market features, the

so called equity premium puzzle has been a long standing issue in the economics and

finance literature. For the most part, there are two categories for research on the

equity premium puzzle. First, many researchers study data to document that the

equity premium does exist and what its behavior looks like over time.1 Second, other

researchers focus on how to rationalize the equity premium in variations of the stan-

dard consumption-based intertemporal economic model used in macroeconomics and

finance. Among others, Cochrane (2001) and Mehra (2003) provide outstanding crit-

ical reviews of alternative theoretical approaches suggested for finding a solution to

this puzzle. Mehra (2003) organizes and discusses many of these important exten-

sions of the standard consumption-based intertemporal economic model and explains

why they fail to solve the equity premium puzzle. These extensions include; (i)

alternative assumptions about preferences, as in Abel (1990), Benartzi and Thaler

(1995), Campbell and Cochrane (1999), Constantinides (1990), and Epstein and Zin

(1991); (ii) the presence of incomplete markets, as in Mankiw (1986), Constantinides

and Duffie (1996), Heaton and Lucas (1997) and Storesletten, Telmer, and Yaron

(2007); (iii) market imperfections, as in Aiyagari and Gertler (1991) and Alvarez

and Jermann (2000); (iv) alternative probability distributions to allow for rare, but

disastrous events, as in Rietz (1988); and (v) the hypothesis of the survivorship bias,

suggested in Brown, Goetzmann, and Ross (1995).

Subsequent to the Cochrane (2001) and Mehra (2003) reviews, additional papers

1Some papers, such as Bessler (1999), Mehra, (2006), Vivian (2007), Sarkar and Zhang (2009),

Rieger, Hens and Wang (2013), Horvath (2020) and Christou, Gupta and Jawadi (2021), study the

equity premium in markets other than the United States. Others, such as Cogley (2002), Park,

(2006), Shackman, (2006), Sarkar and Zhang (2009), Sarantis and Ekaterini (2013), Ma (2013),

Jacobs, Pallage and Robe (2013), Kim (2016), Smith (2017), Avdis and Wachter (2017), Bonaparte

and Fabozzi (2017) and Wilson (2020), use novel econometric methods or data sets to document the

equity premium. While others, such as Lettau, Ludvigson and Wachter (2008) and Wachter and

Warusawitharana (2015), investigate how the equity premium changes over time.
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have further contributed to the theory rationalizing the equity premium.2 In evalu-

ating any theoretical solution to the puzzle, it is important to keep in mind Mehra

(2003) which convincingly argues that, “the equity premium puzzle is a quantitative

puzzle”: while the standard consumption-based intertemporal model and its exten-

sions are aligned with the qualitative risk prediction that stocks should return more

than bonds on average, the puzzle really shows up because the quantitative predic-

tions from most of these extended models fall short by a wide margin in explaining

the wedge between stock and bond returns.

This paper suggests an alternative theoretical solution to the equity premium

puzzle. We propose a behavioral extension of the standard constant relative aversion

utility function in which the representative agent not only shows a preference for

smoothing consumption in the standard way, through a relatively low intertempo-

ral elasticity of substitution (IES), but also shows a preference for predictability of

consumption. This assumption of a preference for consumption predictability intro-

duced here is very much related to a theoretical and empirical literature in which

social scientists from different fields (economics, psychology, and sociology) have sug-

gested that discrepancies between achievements and expectations affects individuals’

subjective well-being (among others, Campbell, 1976; Mason and Faulkenberry, 1978;

Higgins, 1987; Bertoni and Corazzini, 2018).

The desire for predictability of consumption creates an additional smoothing fea-

ture beyond the risk aversion and intertemporal substitution properties implied in

the standard model. This additional feature not only enhances the desire for con-

sumption smoothing, but also has implications for the stochastic discount factor, the

rate of relative risk aversion (RRA) and the IES. We show that this feature results

2Most of these papers build on some of the earlier models. For instance, Melino and Yang (2003),

Allais (2004), Zeisberger, Langer, and Trede (2007), Fielding and Stracca (2007), Heiberger (2020)

and Fujii, and Nakamura (2021) consider alternative preference structures. Others, such as Jermann

(2010), Gollier and Schlee (2011), Favilukis (2013), Dunbar (2013), Wilson (2020) and Kim (2021),

consider market structures in which agents are heterogenous and participate in the risk markets in

different ways or markets are incomplete somehow. While others, such as Cogley and Sargent (2008),

Julliard and Ghosh (2012), Suzuki (2014), Wang and Mu (2019), Horvath (2020) consider extensions

of the rare events idea.

2



in a stochastic discount factor that is considerably more variable than the one im-

plied by standard preferences when confronted with annual times series consumption

data from 1955 to 2022, and this increased volatility in the stochastic discount fac-

tor solves the puzzle. Our solution considers an alternative preference structure like

many other proposed solutions, but it also has a connection to the rare events litera-

ture because rare events in the observed data are important for generating the equity

premium. However, one distinction from the other rare events solutions suggested in

the literature is that the rare events in this study are not so rare that they have never

been observed. Instead, the rare events identified in the analysis with our modified

preferences are somewhat extreme events featuring large consumption forecast errors

that have been observed during recent economic times, such as the financial crises

prior to the Great Recession, or the Covid pandemic.3

Our primary empirical objective was to find parameters that result in a Hansen-

Jagannathan bound that is consistent with observed values. We find there are many

such parameters. Furthermore, in an effort to provide insight into the empirical

results, we decompose the stochastic discount factor into some of its components to

reveal the source for the increased variability. This source is also connected to the

RRA and IES, which are shown to be time varying in the modified model. The ob-

served consumption series is generally smooth and consumption forecast errors are

generally modest. However, the model implies that even modest consumption fore-

cast errors result in higher volatility in the stochastic discount factor, a higher RRA

and a lower IES. The observed consumption series also exhibits periods in which

the consumption forecast errors can be very large, such as during steep economic

contractions. During these times, the stochastic discount factor can spike up. In

addition, during these periods when the consumption series becomes less predictable

and the consumption forecast errors become large, the consumer’s desire for con-

sumption smoothness is enhanced and can be seen in a higher RRA and lower IES.

3Although their focus was not so much on the equity premium puzzle, Cogley and Sargent (2008)

also use an observed rare event, the Great Depression, in their analysis.
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In general, agents can be understood to want to hold lower risk assets, despite the

equity premium, because the loss in utility when consumption becomes unpredictable

is large and painful. A secondary empirical investigation was also undertaken which

sought parameters to match the comovement between the stochastic discount factor

and risky returns. For this investigation, the parameters which fit this comovement

were similar to those found to fit the Hansen-Jagannathan bound. Taken together,

it was shown that several important empirical observations can be simultaneously

achieved to resolve the equity premium puzzle.

2 Consumer preferences with consumption forecast er-

rors

The most common utility function used to demonstrate the equity premium puzzle

is the constant rate of relative risk aversion (CRRA) utility function. This utility

function is popular in the macroeconomics literature, with well known properties,

and because of this, makes for a useful starting point. Various insights into the

puzzle can be seen with this utility function and these insights have motivated various

modifications in an effort to resolve the puzzle. We follow a similar strategy here.

One of the insights from the CRRA utility function notes that for reasonable

levels of risk aversion, observed consumption is too smooth for observed asset returns

(Mehra and Prescott, 1985). Alternatively, one can say that the observed smooth

consumption data and the large risky asset returns can only be reconciled with huge

levels of risk aversion in a standard CRRA utility function. We use this insight to

motivate a modified utility function in which agents prefer further smoothing for

consumption than in the standard CRRA utility function, thus making the desire for

smooth consumption line up better with the observed data at sound values of the risk

aversion parameter. To achieve this, we add to the CRRA utility function a term that

reflects a preference for predictability of consumption. Here, in addition to obtaining

utility from consumption, agents predict future consumption using information they

have available at a particular date, and the closer their prediction is to observed
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consumption, the higher their utility, while the worse their prediction, the worse

their utility. We summarize these desires by assuming consumers make consumption

choices so as to maximize

0

( ∞X
=0


µ

1

1− 

1−
 − 

1− 

³
2 + ( −−1{})2

´ 1−
2

¶)


where  is consumption at date , and subscripts on the expectations indicate in-

formation sets available at the date of the subscript. We often refer to this utility

function as the modified utility function in our discussion below.4

The utility function has four parameters: the subjective discount factor, , the

standard relative risk aversion parameter, , and the two additional parameters, 

and , describing the new term capturing the taste for consumption predictability.

The following restrictions are placed on each of the parameters: 0    1,   0,

 ≥ 0 and   0. The first two parameter restrictions are consistent with the

standard assumptions seen in the CRRA utility function, while the assumption that

 is nonnegative reflects the assumption that forecast errors result in lower utility.

Here we allow the possibility that  = 0 in order to allow the standard CRRA utility

function to be a special case of this utility function. We restrict  to be strictly

positive so as to avert any potential problems that might arise should a perfect

forecast of consumption be obtained and thus the terms in the second part of the

utility function equal zero and are then raised to a potentially negative power (this

would be the case if   1). Finally, the values of  and  have additional restrictions

that they cannot be too large to ensure that the marginal utility of consumption will

always be non negative as is assumed in any standard characterization of consumer

preferences.

Some further comments about the second term of the utility function are useful

for highlighting three important properties of this utility function specification: scale

invariance, symmetry for positive and negative forecast errors, and an interaction

between the marginal utility of consumption and (the size of) forecast errors.

4Because information sets change over time, these preferences are time varying, which is a type

of state dependence, but differs from Melino and Yang (2003).
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Scale invariance: The two interior terms of the second part of the utility function

are each raised to a power of 2 to insure that a situation in which a negative number

is raised to a power does not occur. Because  will always be positive, raising it to

a power of 2 is not essential. However, the forecast error term need not be positive,

so raising it to a power of 2 is essential to avoid powers of a negative number arising.

Because the forecast error is raised to a power of 2, this induces the power of 2 on the

 term as well as the 2 in the denominator of the exponent 1−
2
. These additional

power restrictions are used in order to ensure that the modified utility function is

also scale invariant as the standard CRRA utility function, which is a useful property

that allows the utility function to be used in settings with growing arguments.

Symmetry for positive and negative forecast errors: Raising the forecast error to

a power of 2 in the utility function implies a symmetry for positive and negative fore-

cast errors. This means that perfectly predictable consumption yields the highest

utility and missed predictions lead to lower utility with the same utility reduction

for overforecasting and underforecasting by equal amounts. This implies that agents

have a second motivation for smoothing consumption. In addition to the standard

smoothing motivation due to the intertemporal elasticity of substitution, agents also

desire consumption to be predictable. This assumption of a preference for consump-

tion predictability is very much related to the theoretical and empirical literature in

which social scientists from different fields have suggested that discrepancies between

achievements and expectations affects individuals’ subjective well-being (see Bertoni

and Corazzini, 2018; and references therein).

Marginal utility of consumption depends on forecast errors: Including the positive

term 2 not only overcomes the potential problem, noted above, associated with the

second part of the utility function being zero, but also results in the marginal utility

of consumption depending on consumption forecast errors. It can be shown that the

marginal utility of consumption is in general a decreasing function of consumption

forecast errors.5

5A supplementary appendix provides some additional details for the mathematical expressions

shown in the paper, including a demonstration that the marginal utility of consumption is a decreas-
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Finally, one additional notational definition will often be used. In many cases

it will be useful to use the notation  =  − −1{} to indicate the forecast error
at  for forecasts of  based on information up to time  − 1. This results in some

simplification to the second term of the utility function and will make some of the

expressions below more friendly.

2.1 Agent optimization and asset pricing relationships

Using this utility function, one can derive some common expressions used in asset

pricing investigations. Assuming a consumer budget constraint which includes both a

risky and risk-free asset, and using standard optimization methods, an intertemporal

first order condition relating asset returns to utility is given by
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where +1 is the return on an asset.
6 To solidify notation, we will leave +1

without any further notation to indicate the return on the risky asset and we will

add a superscript  to indicate a risk-free asset return, as in 

+1. In the asset

pricing literature it is common to define the marginal rate of substitution between

time  goods and time + 1 goods by

+1 =



∙

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2
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¸¸ 

and to reduce the first order condition to  {+1+1} = 1.7 A further set of stan-
dard algebraic steps can be implemented to obtain the Hansen-Jagannathan bound

ing function of the forecast errors.

6We use the expression

(+1)

2
 1
2 , rather than |+1|, to be clear that various functions are

differentiable because absolute value expressions can sometimes be unclear as to their differentiability.
7+1 also goes by other names including, stochastic discount factor and pricing kernel.
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(Hansen and Jagannathan, 1991) given by¯̄̄̄
¯ (+1)−


+1

 (+1)

¯̄̄̄
¯ ≤  (+1)

 (+1)
 (1)

where the term on the left side of the inequality is known as the Sharpe Ratio and

the term on the right is the Hansen-Jagannathan bound.

Several insights about the Hansen-Jagannathan bound can be seen from these

expressions. For instance, notice that a risk-free asset return must also satisfy the first

order condition  {+1}
+1 = 1, which implies that  {+1} ≈ 1 since observed

risk-free asset returns are close to one.8 This implies that the Hansen-Jagannathan

bound is roughly equal to  (+1). Furthermore, studying the expression for the

stochastic discount factor, +1, one can easily see that in the standard CRRA model

(i.e. when  = 0), its conditional volatility,  (+1), roughly equals the product

of the parameter  times the growth rate of consumption, +1. Hence, for the

observed Sharpe ratio and consumption growth values, combined with any sound, low

value of gamma, the Hansen-Jagannathan inequality (1) does not hold, which results

in the equity premium puzzle found in the standard model. However, when agents

care about consumption predictability, +1 also depends on consumption forecast

errors, helping to increase the size of the conditional volatility of +1 for any given

values of  and growth rate of consumption while keeping the conditional expectation

of +1 close to one as discussed below. In short, the modified utility function solves

the equity premium puzzle and the risk-free rate puzzle at once.

Consumption forecast errors increase the stochastic volatility of +1 through

two channels. First, realized consumption forecast errors enter in the denominator of

+1 (i.e. the current marginal utility of consumption) lowering it, and because the

current marginal utility of consumption is known at time  it works as scale factor

in the definition of the conditional stochastic volatility of +1. That is, the larger

is  and/or the forecast error, ()
2, the lower is the denominator of +1 and the

larger its stochastic volatility. Second, the stochastic volatility of +1 also depends

8Mehra (2003, p. 58, Table 4) reports a value of 1.008.
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on the volatility of the numerator of +1, which increases with the volatility of

consumption forecast errors.

For our primary empirical exercises below, we will find it is also useful to use the

expression obtained one step prior to (1), which is given by

 (+1)−

+1

 (+1)
× −1
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=
 (+1)

 (+1)
 (2)

where  denotes the conditional correlation between +1 and +1.
9

2.2 Intertemporal relationships

In order to gain intuition on the role of the additional terms entering in the stochastic

discount factor, +1, in explaining the equity premium puzzle it is useful to obtain

expressions for the rate of relative risk aversion (RRA) and the intertemporal elas-

ticity of substitution (IES) associated with the modified model. These concepts are

given by the following expressions:
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where we use the notations Ω =
³
2 + ()

2
´
and eΩ+1 = µ ³ +1

´2
+
³
+1


´2¶
to condense the expressions so they will fit on the page.

A few comments about the  are insightful. First, when  = 0, the 

equals . This follows because, as noted earlier, the standard CRRA utility function

is just a special case of the modified utility function used here. Furthermore, like in

9An alternative fitting exercise is discussed in Section 3.4 which uses a slight variation on this

expression.
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the CRRA utility function, the denominator is the marginal utility of consumption,

which is the same denominator as in +1. This fact will be important later when

we interpret the empirical results. Finally, unlike the CRRA utility function, when

 6= 0, the  is time varying which is why we have included a time subscript on

it.

For the  some additional comments are also insightful. First, as in the

CRRA utility function,  = 1 for all values of ,  and .10 This means

that  is also time varying. This is in clear contrast with Epstein and Zin’s

(1991) preferences where the two concepts are determined by two different utility

parameters.

3 Empirical results

An algebraic analysis of the determinants of the Hansen-Jagannathan bound under

the modified utility function is somewhat challenging because the stochastic discount

factor, +1, adds additional terms to the standard stochastic discount factor that

are highly non-linear. As a way of overcoming this issue, in this section we empir-

ically investigate the implications of the modified utility function using a statistical

model of the per-capita consumption series, based on annual U.S. data from 1955 to

2022, to characterize the equity premium.11 A similar approach was followed by Reis

(2009) to characterize the costs of aggregate fluctuations.12 By using a statistical

model rather than a fully-articulated dynamic stochastic general equilibrium model,

we are following an agnostic approach that allows us to assess whether it is feasible

to reconcile aggregate consumption and return data with the basic pricing equation

associated with a sound characterization of preferences that include a preference for

consumption predictability. This approach abstracts from any other additional fea-

tures that characterize any particular dynamic stochastic general equilibrium model

10A proof of this is available in the supplementary appendix.
11 In a robustness investigation described later, we use quarterly data from 1954:q3 to 2023:q1.
12As emphasized by Reis (2009, footnote #1), a statistical model can be interpreted as an economic

model of an endowment economy in which the path of consumption is described by a statistical model

of observed data on consumption.
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one might considered, and thus focuses only on the ability of the modified utility

function for explaining the equity premium puzzle. The fitting approach is a calibra-

tion type approach which is popular in the equity premium puzzle literature. Here

we make use of some commonly used statistical numbers and show that it is possible

to find parameter values that are consistent with the observed data and these com-

mon statistical values. Because most of the equity premium puzzle literature focuses

on annual data, our primary investigation focuses on annual data for the period

1955-2022 which was aggregated from quarterly data, but in the robustness section

we also investigate quarterly data and another annual sample period.

Following most of the related literature, we begin our analysis by focusing on the

relationship between the Hansen-Jagannathan bound and the Sharpe ratio. Later, in

Section 3.4, we will extend our analysis to study the equity premium from a different

angle which looks directly at the optimality condition  {+1+1} = 1.
The key statistic to match is the Sharpe ratio (

(+1)−
+1

(+1)
). A common value

for annual data is 037, but some researchers use values as large as 050, so we focus

on this range.13 We confirm this empirical range for the Sharpe ratio value in Table

1 by considering data at both annual and quarterly frequencies over several periods

of time. Table 1 also shows that the Sharpe ratio is lower for quarterly data than

annual data, which is a well known fact, and is often mentioned as showing that

the equity premium puzzle is even worse for long-horizon investors and long-horizon

returns.14 A common value for the correlation between the stochastic discount factor

and the return on risky assets () is −020.15 So, our exercise is to show that it

is possible to find values for the model parameters in the modified model so that the

Hansen-Jagannathan bound (
(+1)

(+1)
) is in the range of 185 to 250 as needed to

satisfy (2).

Some of the utility function parameters are set or restricted to commonly used

values or ranges. For instance, we set  = 096, which is a value often used with

13Mehra (2003) uses the value 037, while Cochrane (2001) considers the value of 050.
14See for instance, Cochrane (2001, p.462).
15This is the value noted by Cochrane (2001, p. 457).
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annual data.16 We also, focus on a range of  values given by 10 to 190, which

is a reasonable range according to the empirical literature and for which the CRRA

utility function is unable to match the empirical data for.1718 The remaining two

parameters,  and , are then set to achieve the Hansen-Jagannathan bound. It

turns out, there are many, so we only provide a few in our discussion below. In

particular, in our primary calibration we use  equal to 0.1 and search over the 

range until the Hansen-Jagannathan bound was achieved.19

Table 1. Sharpe ratio

Annual Quarterly

Sample period

1934-2022 0.57

1934:q1-2023:q1 0.30

1955-2022 0.52

1954:q3-2023:q1 0.28

Notes: Stock and bond return data used in the computation of the Sharpe ratio was

downloaded on June 28, 2023 from Robert Shiller’s website. This is the updated data set

used in Robert Shiller’s book "Irrational Exuberance" Princeton University Press, 2000, 2005,

2015, editions.

3.1 Fitting based on U.S per-capita consumption

To compute the Hansen-Jagannathan bound implied by the modified utility function,

we need to compute values for the conditional expectation and conditional standard

deviation of+1. This requires several steps. First, we need to compute a series for

+1. For this we need a per-capita consumption series and a per-capita consumption

16 In our robustness section, we also fit the model to quarterly data. For that exercise we use

 = 099.
17We actually use a value of  = 099 as the lower end of the range to avoid the extra coding

required if  precisely equals 1.
18For instance, Smets and Wouters (2007) estimates a 5%−95% posterior credible set of (116 159)

using post-WWII US data. Typical papers addressing the equity premium puzzle find that  needs

to be unusally large (Mehra and Prescott, 1985).
19 In exercises not reported here, we were also able to fit the data with very small  values such as

10× 10−7 as well as larger values up to 10.
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forecast error. To get these, we compute U.S. real per-capita consumption using

standard formulas.20 Next, we use this data in a forecasting equation to obtain the

forecasting errors. We investigated several forecasting models, and use a random walk

model in our primary investigation. This model was chosen in part because it is often

found that per-capita consumption has a unit root, but also because it was among

the best models among the many we investigated according to standard criteria such

as Akaike and Schwarz-Bayesian information criteria.21 From this forecast model we

generate a series for the forecast errors given by  =  − −1{}. With the per-
capita consumption series and the forecast error series, we then compute +1 for a

particular parameter setting.

Next, we need to compute conditional expectations and conditional standard

deviations for +1. To do this, we run a generalized autoregressive conditional

heteroskedastic model with one autoregressive term and one moving average term

((1 1)) and collect from this model conditional values for the forecast and

variance. We then average these conditional forecasts to get an estimate for  (+1)

and average the conditional variances to obtain an estimate for   (+1) which

are then used to compute the Hansen-Jagannathan bound.

Computation of the Hansen-Jagannathan bound is computed for many different

parameter settings and these computations are then plotted in figures such as Figure

1 below to provide intuition and insight into the implications of the modified utility

function. Looking at the left hand edge of Figure 1, where  = 0, which is the value

in which the modified utility function equals the CRRA utility function, we see that

the Hansen-Jagannathan bound is too small. This is the typical finding seen in the

equity premium literature. In particular, for values of  in the empirical range, the

20Nominal aggregate consumption time series is defined by (quarterly, seasonally adjusted annual

rate) Personal Consumption Expenditures (PCEC), expressed in billions of US Dollars. Real aggre-

gate consumption is obtained deflating the previous consumption time series by (quarterly, seasonally

adjusted) implicit GDP price deflator index. Finally, real per-capita consumption is obtained divid-

ing real agregate consumption by an index of the population level based on the population time

series: CNP16OV. Price and population indexes consider the year 2012 as the base year. All time

series were retrieved from FRED: Federal Reserve Economic Data on June 17th, 2023.
21 In the robustness section we also discuss forecasting models which use AR(1) and AR(2) fore-

casting models for differenced per-capita consumption.
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Hansen-Jagannathan bound never gets close to 037, the lower value of the range for

the Sharpe ratio reported in Mehra (2003). However, for values of  that are not too

large, we see that it is possible to get Hansen-Jagannathan bounds in the range of

185 to 25 (i.e. the range of Hansen-Jagannathan bound values consistent with the

Sharpe ratio estimates of 037 and 05, respectively, and the conditional correlation

between stock returns and discount factors of −02).22 These values are seen in the
back corner of Figure 1. Furthermore, these parameter value combinations of  and

 are not unique, and it is possible for any and all of the parameters to be altered by

small amounts and still produce a figure that is qualitatively similar to Figure 1.

3.2 Insights into the larger Hansen-Jagannathan bound

Understanding the source of the larger Hansen-Jagannathan bound is fairly straight

forward. Looking at (2), one sees that the larger bound can occur by either a

smaller  (+1) or a larger  (+1). However, as noted above, the value of

 (+1) is restricted to be close to one based on the average of observed risk-free

asset returns, so the difference needs to arise from the  (+1) term. We find that

for both the standard CRRA utility function and the modified utility function the

values for  (+1) are similar, but the modified results in a larger  (+1). The

larger  (+1) arises mostly because of the difference in the denominator for +1

associated with the modified utility function. The standard CRRA specification

implies a denominator of 
−
 while the modified specification has a denominator of


−
 −

³
2 + ()

2
´ 1−

2
−1 ∙

 +
³
()

2
´ 1
2

¸
. Both of these are the marginal utility

of consumption for the respective specifications. When  = 0, the two denominators

are equal and the Hansen-Jagannathan bounds are the same and are not very large

as seen on the left front edge of Figure 1. However, as  increases, the second term

in the denominator of the modified specification starts to approach the value of the

first term in the denominator making the overall denominator approach zero. Of

22The value of  = −020 assumed here is the value suggested in Cochrane (2001, p. 457).
We will relax this assumption by examining directly the covariance between the stochastic discount

factor and the risky returns below.
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Figure 1: Hansen-Jagannathan bound grid
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course other parameters play a role, such as the value of ,  and , so the value

of  that induces the volatility varies depending on these other parameters, but the

easiest way to understand the essence of the increased +1 volatility is to see that

increasing  results in the denominator moving nearer to zero and thus creating the

larger percentage standard deviation seen on the right side of (2).

This increased volatility in +1 can also be understood empirically by studying

Figures 2, 3 and 4 below. These figures correspond to the calibration at the shoulder

value marked in the Figure 1 where the Hansen-Jagannathan bound is only 0.87.

We choose to use this calibration rather than the peak calibration where the Hansen-

Jagannathan bound is 2.5 because the volatility of +1 at the peak value of the

modified specification is so large that the variability of the standard CRRA volatility

of +1 is not noticeable in the diagram.

In Figure 2, the blue line shows the empirical values for +1 for the standard

CRRA model when  = 1872 and  = 096 using the observed consumption data,

while the orange line shows the empirical values for+1 for the modified model using

the same  and  values and  = 024 and  = 01. Simple inspection shows that the

mean of the empirical values for +1 are roughly equal, but the variance and hence

the standard deviations are much different with the modified model having a much

larger variance. Together, this similar mean but larger variance induce the larger

percentage standard deviation in +1 in the modified specification, which results in

the achievement of the Hansen-Jagannathan bound.

Figure 3 shows the source for this volatility increase. The blue line in Figure 3

plots the observed values for 
−
 while the orange line plots the observed values for


³
2 + ()

2
´ 1−

2
−1 ∙

 +
³
()

2
´ 1
2

¸
. Both series decline over time because there

is an upward trend in  and the exponent −1872 (i.e. −) induces the decline. The
blue line has two uses. First, the blue line represents the denominator for +1 in

the standard CRRA model, but it also represents the first term in the denominator
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Figure 2: The stochastic discount factor
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Figure 3: Denominator pieces of the stochastic discount factor

for the modified model. The orange line plots the second term in the denominator of

the modified model and, as can be seen, sometimes the lines suddenly become very

close, inducing a term near zero in the denominator of +1. For instance, during

the Global Financial Crises as well as during the Covid Recession there were sharp

swings in , inducing large consumption forecast errors as shown in Figure 4, and

thus large fluctuations in +1. These large fluctuations in +1 during the Global

Financial Crises and the Covid Recession can be seen in Figure 2.

Figure 4 also shows two interesting features of the data which have important

implications for the conditional variance in +1. First, the large forecast errors

around the Global Financial Crises and the Covid Recession are important drivers of
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the high volatility of +1, and they consequently have a large impact on the value

of the Hansen-Jagannathan bound seen in Figure 1. This means our findings are

somewhat aligned with Rietz (1988), which solved the equity premium puzzle based

on disaster states. However, although the modified model also includes extreme

outcomes to solve the puzzle, the magnitudes are not as extreme as required by Rietz

(1988). The modified specification only requires consumption outcomes that have

been witnessed in the historical data, such as those that occurred during the Global

Financial Crises and the Covid Recession. Furthermore, the value of  need not

be unusually large. Rietz (1988) on the other hand, requires the prospect of a 1 in

100 chance of a 25 percent decline in consumption to reconcile the equity premium

with a rather high risk-aversion parameter of 10 (Mehra, 2003). Second, another

interesting feature of the data is that although consumption forecast errors appear to

have a constant mean, they do appear to be heteroskedastic with volatility varying

over time.

One final set of insights into the mechanism for the larger Hansen-Jagannathan

bound can be obtained by considering  and . Recall that the denominator

for +1 and  are the same. So, as seen in Figure 3, the two denominators can

become very small when consumption forecast errors become large. It is during these

periods in which the forecast errors are large that the rate of relative risk aversion

becomes very high and agents become strongly inclined to hold less risky assets in

order to induce consumption smoothing. This desire for consumption smoothing

can also be seen by recalling that  = 1 which implies that as  rises,

 falls, again implying that agents become more inclined to smooth consumption

not only across states of nature as indicated by a high , but also over time

as indicated by a low . Although these comments are made for a particular

calibration on a particular set of observed data, the time variation in the  and

 occurs in general (recall that  = 1 for all values of ,  and ).

This means that regardless of the data, with this modified utility function, agents
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Figure 4: Consumption forecast errors
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desire to hold a relatively low risk portfolio despite an equity premium because large

movements from smooth consumption imply large consumption forecast errors and

consequently high utility loses, higher aversion to risk and a stronger desire to not

substitute consumption over time.

3.3 Robustness

We considered a number of alternative settings to those discussed in our primary

investigation above in order to assess the robustness of these results. Some of these

exercises were to use the same data but different values of  to see if a calibration could

be obtained that would attain the Hansen-Jagannathan bound. As noted earlier,

the value of  was flexible, and for many values we were able to get the desired

Hansen-Jagannathan bound. Other exercises included two different consumption

forecasting models. In a supplementary appendix that is available from the authors

upon request, we show that figures that are very similar to Figure 1 can be obtained

when an AR(1) or an AR(2) model to forecast differenced consumption is used.

Also in that appendix, it is shown that the results are robust to changes in the data.

For this exercise we consider data that stopped at the end of 2019, just before the

Covid pandemic started to affect the economy, and we consider quarterly data over

the full sample. In both of these settings, figures qualitatively similar to Figure 1

were obtained. In all four of these exercises, we used  = 01, and found  and 

combinations roughly the same as in the primary investigation, with  around 1.9

and  around 0.2.

3.4 Comovements between the stochastic discount factor and risky

returns

In this section we investigate a few other features of the model as a way of checking

our fitting exercise. These features include: (i) investigating an alternative fitting

approach that does not make use of  = −02 a common statistic used earlier to
connect the Sharpe ratio to the Hansen-Jagannathan bound, and (ii) investigating

the implied risk-free rate of return.
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Our baseline fitting algorithm focused on fitting the Hansen-Jagannathan bound,

which is linked to the observed Sharpe Ratio. This is a natural objective since the two

concepts are at the center of much of the equity premium literature. An alternative

fitting algorithm might focus on fitting  (+1 +1). Although not a central

focus in the equity premium literature, this statistic does have some attractions. To

understand these, note that a few steps of algebra away from the Sharpe ratio algebra,

or expression (2), gives

 (+1)−

+1 = − (+1 +1)

 (+1)
= −

+1 (+1 +1) or

 (+1 +1) = −( (+1)−

+1)



+1



This expression shows that  (+1 +1) is equal to the ratio between two widely

discussed observables. In particular, the equity premium,  (+1)−

+1, is esti-

mated to be near 7%, while the risk-free return, 

+1, is near 1 as seen in Table 2. Us-

ing these results, we considered a fitting algorithm similar to the one described above

where we generated time series for+1 and+1 for a particular set of parameter val-

ues. We then ran GARCH(1,1) models on+1, +1 and+1×+1 to obtain con-

ditional means for each of these series in the same way as we did earlier. These results

were then used to compute  (+1 +1) =  (+1+1)− (+1)× (+1)

for a particular set of parameters. Using a similar grid search algorithm as de-

scribed above, we search over the parameter space until we found parameters so that

 (+1 +1) is roughly −007. The results of this exercise are shown in Figure
5.23

Table 2. Equity premium and risk-free rate

Sample period

1889-1978 1934-2022 1955-2022

Mean of equity premium 0.0618 0.0838 0.0723

Mean of risk-free rate 1.008 0.9982 1.0061

Notes: The estimates for the sample period 1889-1978 are taken from Mehra (2003, Table

23 In Figure 5, we plot −1×  (+1 +1) to aid in the interpretation of the diagram.
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4), while the statistics for the other two sample periods were obtained by the authors using

the times series described above.

Looking at the left edge of Figure 5, where  = 0, which is the value in which

the modified utility function equals the standard CRRA utility function, we see that

the  (+1 +1) is close to zero. In particular, for values of  in the empirical

range, the  (+1 +1) never gets close to −006, the lower value of the range
for the equity premium shown in Table 2. However, for  = 1872 and for values of

 that are not too large, in the range 023− 024, we see that it is possible to get the
 (+1 +1) in the range of 005 to 01. Furthermore, this range of parameter

values are similar to those found solving the equity premium puzzle in Figure 1

above. Moreover, Figure 6 shows that for the same range of parameter values solving

the equity premium puzzle, the inverse of the conditional mean of the stochastic

discount factor implies a risk-free return around 1.00987, which is close to the value

of 1.008 reported in Mehra (2008) for the period 1889-1978 and the values reported in

Table 2 for alternative sample periods. In short, the same range of parameter values

solving the equity premium puzzle does a good job in solving the risk-free puzzle

coined by Weil (1989). Finally, Figure 7 shows the implied Hansen-Jagannathan

bound implied by the simulated  (+1 +1) for alternative values of  and ,

which is rather similar to the displayed in Figure 1 obtained setting the conditional

correlation between equity returns and the stochastic discount factor equal to −02.
Together, these figures show that several important empirical observations can be

simultaneously achieved with the modified utility model.

4 Conclusion

In this paper we argue that agents have a preference for consumption predictability.

We find that by adding a desire for consumption predictability into the standard

constant rate of relative risk aversion utility function we are able to solve the equity

premium puzzle. The intuition for why this works is that the added interest in pre-
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Figure 5: (−1)× Conditional covariance between the stochastic discont factor and

the equity return
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Figure 6: The inverse of the conditional mean of the stochastic discont factor

25



Figure 7: The Hansen-Jagannathan bound implied by the simulated  (+1 +1)
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dictability increases the desire to smooth consumption. Using observed consumption

data, we find that there is enough unpredictability in the data to induce consumers

to hold less risk despite the equity premium. We also sought to understand the

mechanism more deeply and connected the result to increased volatility in the sto-

chastic discount factor, a time varying rate of relative risk aversion (RRA) and a

time varying intertemporal elasticity of substitution (IES). We find that the unpre-

dictability of the observed consumption series results in increased volatility in the

stochastic discount factor, and that during periods of extraordinary unpredictability,

such as during recent economic contractions, agents time varying RRA becomes very

high and their IES becomes very low as agents seek to smooth their consumption. In

addition, it was found that an alternative fitting algorithm which focused on fitting

the comovements of the stochastic discount factor and risky returns resulted in sim-

ilar parameter values, demonstrating that the modified model is able to fit several

different empirical observations simultaneously.
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5 Appendix 1: Details for mathematical calculations

In this appendix we provide some additional details for the mathematical expressions

given earlier in the paper. This appendix is not intended for publication but rather

help readers check the mathematics. We organize these into several subsections for

clarity.

5.1 Lagrangian, first order conditions and the asset pricing equa-

tions

The representative agent chooses { +1 :  ≥ 0} so as to maximize

0

( ∞X
=0


µ

1

1− 

1−
 − 

1− 

³
2 + ( −−1{})2

´ 1−
2

¶)
subject to  + +1 =  +  given 0. One way of interpreting the forecast

error term is to say that consumers have an extra smoothness term in their utility

function. When forecast errors are small utility is higher and when forecast errors

are large utility is lower.

One way of writing the Lagrangian for this problem is

L(·) = 0

( ∞X
=0


∙

1

1− 

1−
 − 

1− 

³
2 + ( −−1{})2

´ 1−
2
+  [ +  −  − +1]

¸)


The first order conditions for  = 0 1    are

L(·)


: 
−
 −

³
2 + ( −−1{})2

´ 1−
2
−1 ∙

 +
³
( −−1{})2

´ 1
2

¸
− = 0

(3)

L(·)
+1

:  {+1+1 − } = 0 (4)

L(·)


:  +  −  − +1 = 0 (5)
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Solving (3) and substituting into (4) we get
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³
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´ 1
2

¸¸
⎫⎪⎪⎬⎪⎪⎭ = 0

or
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2
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2
´ 1
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¸¸
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Which can be rearranged to get
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2
´ 1
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¸¸
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or

 {+1+1} = 1 where (6)

+1 =
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2
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One could imagine a risk-free asset in the model. In this case

 {+1}
+1 = 1 where again (7)

+1 =
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³
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2
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2
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2
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¸¸ 

5.2 The Hansen-Jagannathan lower bound

Equation (6) can be written as

1 =  (+1+1) =  (+1) (+1) +  (+1 +1)

=  (+1) (+1) +  [ (+1)  (+1)]
1
2 

33



where  is the conditional correlation coefficient between +1 and +1. To find

a formula for the excess return,  (+1)−

+1, rewrite this as

 (+1) (+1)− 1 = − [ (+1)  (+1)]
1
2

 (+1) (+1)− {}
+1 = − [ (+1)  (+1)]

1
2 Here we use (7)

 (+1)−

+1 = −

 (+1)

 (+1)
 (+1)  (8)

Note, equation (8) is equation (2) referenced at the end of section 2.1 which we note

is, "one step prior to the Hansen-Jagannathan equation". Since (the absolute value

of) correlation coefficients cannot be greater than 1, then¯̄̄
 (+1)−


+1

¯̄̄
≤  (+1)

 (+1)
 (+1) 

or ¯̄̄̄
¯ (+1)−


+1

 (+1)

¯̄̄̄
¯ ≤  (+1)

 (+1)

which is the standard Hansen-Jagannathan lower bound equation.

5.3 The Rate of Relative Risk Aversion

Define the consumption marginal utility by

 = 
−
 − 

³
2 + ( −−1{})2
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2
−1 ∙

 +
³
( −−1{})2

´ 1
2

¸

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Then we have the following derivative,


=
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− 1
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Then the rate of relative risk aversion is given by

 = −




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2
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2
−1 ∙

 +
³
()
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¸ × 

Notice that for  = 0, one obtains the well-know result:

 = 
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5.4 The Elasticity of Substitution

Let’s start by looking at the definition of IES. It is given by the following.

+1 =

+1


 
+1

×
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+1
+1


=

+1


+1
× +1

+1




where 
+1

= +1 The fraction on the right side of the × is straightforward, but

the derivative term is hard. Recall that
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There are several standard things to note. First, the denominator is a constant based

on information at time  so it can be multiplied through. Second the expectation

terms in the forecast error are also constants, so derivatives with respect to those

terms are zero. Let’s rearrange this by cross multiplying the denominator and dividing

by 
−
 which is done in several steps. To keep things simple, after the second step,

the right side is just labeled constant because when taking the derivative it will be

zero.
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Totally differentiating where we keep the
+1

terms together and compute 

+1


and recognizing that the term
{+1}


is a constant since both the numerator and

denominator are constants at time  and noting that


+1



+1


=

+1−{+1}




+1


=

³
+1

− {+1}



´

+1


= 1− 0 = 1
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We get



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩



⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
³
+1


´−(+1) ³

+1


´
−

³
−−1
2

´µ

³
+1


´2
+
³
+1


´2¶−−12
−1
(2)

Ã

³
+1


´
+

µ³
+1


´2¶ 1
2

!³

+1


´"

³
+1


´
+

µ³
+1


´2¶ 1
2

#

−
µ

³
+1


´2
+
³
+1


´2¶−−12

( + 1)
³

+1


´

⎤⎥⎥⎥⎥⎥⎥⎥⎦


+

+

"³
+1


´−
− 

µ

³
+1


´2
+
³
+1


´2¶−−12

"

³
+1


´
+

µ³
+1


´2¶ 1
2

##



+1

=0. Simplifying



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩



⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
³
+1


´−(+1) ³

+1


´
+( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12
−1 "


³
+1


´
+

µ³
+1


´2¶ 1
2

#2 ³

+1


´
−( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12 ³

+1


´

⎤⎥⎥⎥⎥⎥⎥⎥⎦


+1

+

"³
+1


´−
− 

µ

³
+1


´2
+
³
+1


´2¶−−12

"

³
+1


´
+

µ³
+1


´2¶1
2

##



+1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0

Removing the expectation and cross multiplying



⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
³
+1


´−(+1)
+( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12
−1 "


³
+1


´
+

µ³
+1


´2¶ 1
2

#2
−( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
µ

+1



¶


+1

= −
⎡⎣µ+1



¶−
− 

Ã


µ
+1



¶2
+

µ
+1



¶2!−−1
2

⎡⎣µ+1


¶
+

Ãµ
+1



¶2!1
2

⎤⎦⎤⎦
+1

Eliminating the − gives⎡⎢⎢⎢⎢⎢⎢⎢⎣


³
+1


´−(+1)
−( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12
−1 "


³
+1


´
+

µ³
+1


´2¶ 1
2

#2
+( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
µ

+1



¶


+1

=

⎡⎣µ+1


¶−
− 

Ã


µ
+1



¶2
+

µ
+1



¶2!−−1
2

⎡⎣µ+1


¶
+

Ãµ
+1



¶2! 1
2

⎤⎦⎤⎦
+1
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Now solving for

+1




+1

we get


+1




+1

=

"³
+1


´−
− 

µ

³
+1


´2
+
³
+1


´2¶−−12

"

³
+1


´
+

µ³
+1


´2¶ 1
2

##
⎡⎢⎢⎢⎢⎢⎢⎢⎣


³
+1


´−(+1)
−( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12
−1 "


³
+1


´
+

µ³
+1


´2¶ 1
2

#2
+( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12

⎤⎥⎥⎥⎥⎥⎥⎥⎦


+1

Plugging this in the IES formula to get

+1 =

"³
+1


´−
− 

µ

³
+1


´2
+
³
+1


´2¶−−12

"

³
+1


´
+

µ³
+1


´2¶ 1
2

##
⎡⎢⎢⎢⎢⎢⎢⎢⎣


³
+1


´−(+1)
−( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12
−1 "


³
+1


´
+

µ³
+1


´2¶ 1
2

#2
+( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12

⎤⎥⎥⎥⎥⎥⎥⎥⎦


+1

× 

+1

+1


=

"³
+1


´−
− 

µ

³
+1


´2
+
³
+1


´2¶−−12

"

³
+1


´
+

µ³
+1


´2¶ 1
2

##
⎡⎢⎢⎢⎢⎢⎢⎢⎣


³
+1


´−(+1)
−( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12
−1 "


³
+1


´
+

µ³
+1


´2¶ 1
2

#2
+( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12

⎤⎥⎥⎥⎥⎥⎥⎥⎦

×
µ
+1



¶−1


5.5 Verification that +1 = 1+1

An interesting question is whether the +1 is the reciprocal of the +1 as it

is in the standard CRRA model. Let’s investigate this. The

 =

"

−−1
 − 

"
( + 1)

³
2 + ()

2
´ 1−

2
−2 ∙

 +
³
()

2
´ 1
2

¸2
−
³
2 + ()

2
´ 1−

2
−1
( + 1)

##


−
 − 

³
2 + ()

2
´ 1−

2
−1 ∙

 +
³
()

2
´ 1
2

¸ ×
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so

1


=


−
 − 

³
2 + ()

2
´ 1−

2
−1 ∙

 +
³
()

2
´ 1
2

¸
"

−−1
 − 

"
( + 1)

³
2 + ()

2
´ 1−

2
−2 ∙

 +
³
()

2
´ 1
2

¸2
−
³
2 + ()

2
´ 1−

2
−1
( + 1)

##


Incrementing everything by one period gives 1
+1

=


−
+1 − 

³
2+1 + (+1)

2
´ 1−

2
−1 ∙

+1 +
³
(+1)

2
´ 1
2

¸
"

−−1
+1 − 

"
( + 1)

³
2+1 + (+1)

2
´ 1−

2
−2 ∙

+1 +
³
(+1)

2
´ 1
2

¸2
−
³
2+1 + (+1)

2
´ 1−

2
−1
( + 1)

## µ 1

+1

¶

Multiplying by

1

()
−(1+)
1

()
−(1+)

=


1


−

()

1

()
−(1+)

gives 1
+1

=

³
+1


´−
− 

³
2+1 + (+1)

2
´−−1

2
³

1
−−1

´³
1


´ ∙
+1 +

³
(+1)

2
´ 1
2

¸³
+1


´−1
⎡⎢⎢⎣ 

³
+1


´−(+1)
−

"
( + 1)

³
2+1 + (+1)

2
´ 1−−4

2
³

1
−−3

´³
1


´2 ∙
+1 +

³
(+1)

2
´ 1
2

¸2
−
³

1
−−1

´³
2+1 + (+1)

2
´−−1

2
( + 1)

#
⎤
⎦

=³
+1


´−
− 

µ

³
+1


´2
+
³
+1


´2¶−−12

"

+1

+

µ³
+1


´2¶ 1
2

#³
+1


´−1
⎡⎢⎢⎢⎣


³
+1


´−(+1)
−

⎡⎣( + 1)µ ³ +1


´2
+
³
+1


´2¶−−32

"

+1

+

µ³
+1


´2¶1
2

#2
−
µ

³
+1


´2
+
³
+1


´2¶−−12

( + 1)

⎤⎦
⎤⎥⎥⎥⎦

=

³
+1


´−
− 

µ

³
+1


´2
+
³
+1


´2¶−−12

"

+1

+

µ³
+1


´2¶ 1
2

#³
+1


´−1
⎡⎢⎢⎢⎣


³
+1


´−(+1)
− ( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12
−1 "


+1

+

µ³
+1


´2¶1
2

#2
− ( + 1)

µ

³
+1


´2
+
³
+1


´2¶−−12

⎤⎥⎥⎥⎦
= +1
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5.6 Discussion on the sign of 

Here we show that consumption and forecast errors are substitutes for standard values

of consumption and consumption forecast errors where the former is much larger than

the latter. That is, the marginal utility of consumption is, in general, a decreasing

function of the consumption forecast error, . Let us use this notation to write the

consumption marginal utility:

 = 
−
 − 

³
2 + ()

2
´ 1−

2
−1 ∙

 +
³
()

2
´ 1
2

¸


Then,




= −

∙
 +

³
()

2
´ 1
2

¸³
2 + ()

2
´ 1−

2
−2µ1− 

2
− 1
¶
2 − 

³
2 + ()

2
´ 1−

2
−1

= −
³
2 + ()

2
´ 1−

2
−1½
−
∙
 +

³
()

2
´ 1
2

¸³
2 + ()

2
´−1

(1 + ) + 1

¾

= −

³
2 + ()

2
´ 1−

2
−1³

2 + ()
2
´ ½

−
∙
 +

³
()

2
´ 1
2

¸
(1 + ) +

³
2 + ()

2
´¾

= −

³
2 + ()

2
´ 1−

2
−1³

2 + ()
2
´ n

−
h
 + ()

2
i
(1 + ) +

³
2 + ()

2
´o

= −

³
2 + ()

2
´ 1−

2
−1³

2 + ()
2
´ n

−
h
 + ()

2 +  +  ()
2
i
+
³
2 + ()

2
´o

= −

³
2 + ()

2
´ 1−

2
−1³

2 + ()
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The sign of this partial derivative is negative whenever forecasts errors are negative

(i.e. when consumption is lower than expected). Moreover, the sign would be still

negative in the usual case when consumption is much larger than a positive forecast

error. Put it differently, CMU only increases with huge, positive forecast errors. As
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an additional check, for the values of  and  that solve the equity premium puzzle

one can check whether the time series of
n
 [ − (1 + ) ]−  ()

2
o
contains any

negative number.

6 Appendix 2: Robustness checks

This appendix provides diagrams analogous to Figure 1 in the paper for a few different

investigations. These investigations were briefly discussed in Section 3.3 Robustness.

They include two different forecasting models and two different data structures. The

different forecasting models are an AR(1) and an AR(2) of differenced consumption

and the different data structures are a pre-Covid 19 annual data set and a quarterly

full sample data set. This appendix is not intended to be published.
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6.1 Forecasting model AR(1)

Figure A.1: AR(1) forecasting model
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6.2 Forecasting model AR(2)

Figure A.2: AR(2) forecasting model
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6.3 Pre-Covid sample (1955-2019)

Figure A.3: Pre-Covid sample period
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6.3.1 Quarterly sample period (1955:q1-2023:q1)

Figure A.4: Quarterly data frequency model
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