

Topics to be Discussed

- The Technology of Production
- Isoquants
- Production with One Variable Input (Labor)
- Production with Two Variable Inputs
- Returns to Scale

Introduction

- Our focus is the supply side.
- The theory of the firm will address:
- How a firm makes cost-minimizing production decisions
- How cost varies with output
- Characteristics of market supply
- Issues of business regulation

The Technology of Production

- The Production Process
- Combining inputs or factors of production to achieve an output
- Categories of Inputs (factors of production)
- Labor
- Materials
- Capital

The Technology of Production

- The production function for two inputs:

$$
\begin{aligned}
& Q=F(K, L) \\
& Q=\text { Output, } K=\text { Capital, } L=\text { Labor }
\end{aligned}
$$

- For a given technology

Isoquants

- Assumptions
- Food producer has two inputs
- Labor (L) \& Capital (K)

Isoquants

- Observations:

1) For any level of K, output increases with more L .
2) For any level of L, output increases with more K.
3) Various combinations of inputs produce the same output.

Isoquants

- The isoquants emphasize how different input combinations can be used to produce the same output.
- This information allows the producer to respond efficiently to changes in the markets for inputs.

Production with One Variable Input (Labor)				
Amount of Labor (L)	Amount of Capital (K)		Average Product	Marginal Product
0	10	0	---	---
1	10	10	10	10
2	10	30	15	20
3	10	60	20	30
4	10	80	20	20
5	10	95	19	15
6	10	108	18	13
7	10	112	16	4
8	10	112	14	0
9	10	108	12	-4
10	10	100	10	-8

Production with
 One Variable Input (Labor)

- Observations:

1) With additional workers, output (Q) increases, reaches a maximum, and then decreases.

Isoquants

The Short Run versus the Long Run

- Long-run
- Amount of time needed to make all production inputs variable.

Production with
One Variable Input (Labor)

- Observations:

2) The average product of labor ($A P$), or output per worker, increases and then decreases.

$$
A P=\frac{\text { Output }}{\text { Labor Input }}=\frac{Q}{L}
$$

Production with
 -One Variable Input (Labor)

- Observations:

3) The marginal product of labor (MP), or output of the additional worker, increases rapidly initially and then decreases and becomes negative..

$$
M P_{L}=\frac{\Delta \text { Output }}{\Delta \text { Labor Input }}=\frac{\Delta Q}{\Delta L}
$$

Production with
 One Variable Input (Labor)

Production with

One Variable Input (Labor)

- Observations:
- When $M P=0, T P$ is at its maximum
- When MP > $A P, A P$ is increasing
- When $M P<A P, A P$ is decreasing
- When $M P=A P, A P$ is at its maximum

Production with

One Variable Input (Labor)

- As the use of an input increases in equal increments, a point will be reached at which the resulting additions to output decreases (i.e. MP declines).

Production with
 One Variable Input (Labor)

Production with
 One Variable Input (Labor)

$A P=$ slope of line from origin to a point on $T P$, lines $b, \& c$
$M P=$ slope of a tangent to any point on the TP line, lines a \& c.

Production with
One Variable Input (Labor)

- Can be used for long-run decisions to evaluate the trade-offs of different plant configurations
- Assumes the quality of the variable input is constant

Production with One Variable Input (Labor)

The Law of Diminishing Marginal Returns

- Explains a declining MP, not necessarily a negative one
- Assumes a constant technology

The Effect of
 Technological Improvement

Index of World Food
 Consumption-Per Capita

Year	Index
$1948-1952$	100
1960	115
1970	123
1980	128
1990	137
1995	135
1998	140

- Malthus predicted mass hunger and starvation as diminishing returns limited agricultural output and the population continued to grow.
- Why did Malthus' prediction fail?

Malthus and the Food Crisis

- The data show that production increases have exceeded population growth.
- Malthus did not take into consideration the potential impact of technology which has allowed the supply of food to grow faster than demand.
- Technology has created surpluses and driven the price down.

Production with

 One Variable Input (Labor)- Labor Productivity

$$
\text { Average Productivity }=\frac{\text { Total Output }}{\text { Total Labor Input }}
$$

Production with One Variable Input (Labor)

- Labor Productivity and the Standard of Living
- Consumption can increase only if productivity increases.
- Determinants of Productivity
- Stock of capital
- Technological change

Labor Productivity in Developed Countries

	France	Germany	Japan	United Kingdom	United States	
	Output per Employed Person (1997)					
	$\$ 54,507$	$\$ 55,644$	$\$ 46,048$	$\$ 42,630$	$\$ 60,915$	
Annual Rate of Growth of Labor Productivity (\%)						
$1960-1973$	4.75	4.04	8.30	2.89	2.36	
$1974-1986$	2.10	1.85	2.50	1.69	0.71	
$1987-1997$	1.48	2.00	1.94	1.02	1.09	

Production with
 One Variable Input (Labor)

- Explanations for Productivity Growth Slowdown

1) Growth in the stock of capital is the primary determinant of the growth in productivity.

Production with
One Variabte Input (tabor)
- Explanations for Productivity Growth
Slowdown
2) Rate of capital accumulation in the
U.S. was slower than other
developed countries because the
others were rebuilding after WWII.

Production with -One Variable Input (Labor)

- Explanations for Productivity Growth Slowdown

3) Depletion of natural resources
4) Environment regulations

Production with
 One Variable Input (Labor)

- Observation

- U.S. productivity has increased in recent years

Production with Two Variable Inputs

- There is a relationship between production and productivity.
- Long-run production $K \& L$ are variable.
- Isoquants analyze and compare the different combinations of $K \& L$ and output

Slide 38

The Shape of Isoquants

Production with Two Variable Inputs

Diminishino_Maroinal_Rate of_Substitution

- Reading the Isoquant Model

1) Assume capital is 3 and labor increases from 0 to 1 to 2 to 3 .
\bullet Notice output increases at a decreasing rate $(55,20,15)$ illustrating diminishing returns from labor in the short-run and long-run.

Production with Two Variable Inputs

- Substituting Among Inputs
- Managers want to determine what combination of inputs to use.
- They must deal with the trade-off between inputs.

Production with Two Variable Inputs

- Substituting Among Inputs
- The slope of each isoquant gives the tradeoff between two inputs while keeping output constant.

Production with Two Variable Inputs

- Substituting Among Inputs
- The marginal rate of technical substitution equals:

MRTS $=$ - Changein capital/Change in laborinput
$M R T S=-\Delta K / \Delta L$ (fora fixedlevelof Q)

Production with Two Variable Inputs

- Observations:

1) Increasing labor in one unit increments from 1 to 5 results in a decreasing MRTS from 2 to $1 / 3$.
2) Diminishing MRTS occurs because of diminishing returns and implies isoquants are convex.

Production with Two Variabte Inputs - Observations: 3) $M R T S$ and Marginal Productivity -The change in output from a change in labor equals: $\left(M P_{L}\right)(\Delta L)$

Production with Two Variable Inputs

Observations:
3) MRTS and Marginal Productivity
-The change in output from a change in capital equals:
$\left(M P_{K}\right)(\Delta K)$

Production with Two Variable Inputs
■ Observations:
3) $M R T S$ and Marginal Productivity
- foutput is constant and labor is
increased, then:
$\left(M P_{L}\right)(\Delta L)+\left(M P_{K}\right)(\Delta K)=0$ $\left(M P_{L}\right) /\left(M P_{K}\right)=-(\Delta K / \Delta L)=M R T S$
silde 49

Isoquants When Inputs are Perfectly Substitutable

Labo per month

Slide 50

Production with

 Two Variable Inputs
Perfect Substitutes

- Observations when inputs are perfectly substitutable:

1) The MRTS is constant at all points on the isoquant.

Production with

 Two Variable Inputs
Perfect Suhstitutes

- Observations when inputs are perfectly substitutable:

2) For a given output, any combination of inputs can be chosen (A, B, or C) to generate the same level of output (e.g. toll booths \& musical instruments)

Production with
 Two Variable Inputs

- Observations when inputs must be in a fixed-proportion:

1) No substitution is possible.Each output requires a specific amount of each input (e.g. labor and jackhammers).

Production with Two Variable Inputs

Fixed-Proportions Production Function

- Observations when inputs must be in a fixed-proportion:

2) To increase output requires more labor and capital (i.e. moving from A to B to C which is technically efficient).

Returns to Scale

Measuring the relationship between the scale (size) of a firm and output

1) Increasing returns to scale: output more than doubles when all inputs are doubled

- Larger output associated with lower cost (autos)
- One firm is more efficient than many (utilities)
- The isoquants get closer together

Returns to Scale

Returns to Scale

- Measuring the relationship between the scale (size) of a firm and output

2) Constant returns to scale: output doubles when all inputs are doubled - Size does not affect productivity

- May have a large number of producers
\bullet Isoquants are equidistant apart

Returnsto Scale

Returns to Scale

- Measuring the relationship between the scale (size) of a firm and output

3) Decreasing returns to scale: output less than doubles when all inputs are doubled
Decreasing efficiency with large size
-Reduction of entrepreneurial abilities

- Isoquants become farther apart

Returns to Scale

Summary

- Average product of labor measures the productivity of the average worker, whereas marginal product of labor measures the productivity of the last worker added.

Summary

- Isoquants always slope downward because the marginal product of all inputs is positive.
- The standard of living that a country can attain for its citizens is closely related to its level of productivity.

Summary

- A production function describes the maximum output a firm can produce for each specified combination of inputs.
- An isoquant is a curve that shows all combinations of inputs that yield a given level of output.

Summary

- The law of diminishing returns explains that the marginal product of an input eventually diminishes as its quantity is increased.

