

Topics to be Discussed

- The Technology of Production
- Isoquants
- Production with One Variable Input (Labor)
- Production with Two Variable Inputs

Slide 2

Returns to Scale

Introduction

- Our focus is the supply side.
- The theory of the firm will address:
 - How a firm makes cost-minimizing production decisions
 - How cost varies with output
 - Characteristics of market supply
 - Issues of business regulation

The Technology of Production

- The Production Process
 - Combining inputs or factors of production to achieve an output
- Categories of Inputs (factors of production)
 - Labor
 - Materials
 - Capital

The Technology of Production

- Production Function:
 - Indicates the highest output that a firm can produce for every specified combination of inputs given the state of technology.
 - Shows what is *technically feasible* when the firm operates *efficiently*.

The Technology of Production

The production function for two inputs:

Q = F(K,L)

Q = Output, K = Capital, L = Labor

slide (

For a given technology

Isoquants

- Assumptions
 - Food producer has two inputs
 - ◆Labor (L) & Capital (K)

Isoquants

Observations:

- 1) For any level of K, output increases with more L.
- 2) For any level of L, output increases with more K.
- 3) Various combinations of inputs produce the same output.

Slide 8

Isoquants

- Isoquants
 - Curves showing all possible combinations of inputs that yield the same output

Production Function for Food								
		Labor Input						
Capital Ing	out 1	2	3	4				
1	20	40	5	65	5			
2	40	60	75	85	<u>4</u> 0-2			
3	55	(5)	<u>6</u> 2	100	105			
4	65	85	100	110	115			
5	(5)	<u>60</u> 7	105	115	120			
				s	lide 10			

Isoquants

The Short Run versus the Long Run

- Short-run:
 - Period of time in which quantities of one or more production factors cannot be changed.

Slide 13

• These inputs are called fixed inputs.

Isoquants

The Short Run versus the Long Run

- Long-run
 - Amount of time needed to make all production inputs variable.

Production with One Variable Input (Labor) Amount Marginal Amount Total Average of Capital (K) Output (Q) f Labor (/ Produc Produc -4 -8

Slide 14

Production with — One Variable Input (Labor)

- Observations:
 - The average product of labor (*AP*), or output per worker, increases and th<u>en decreases.</u>

$$AP = \frac{Output}{Labor\ Input} = \frac{Q}{L}$$

- Observations:
 - When MP = 0, TP is at its maximum
 - When MP > AP, AP is increasing
 - When MP < AP, AP is decreasing
 - When MP = AP, AP is at its maximum

Production with One Variable Input (Labor)

As the use of an input increases in equal increments, a point will be reached at which the resulting additions to output decreases (i.e. *MP* declines).

Slide 23

The Law of Diminishing Marginal Returns

• Explains a declining *MP*, not necessarily a negative one

Slide 25

Assumes a constant technology

Malthus and the Food Crisis

- Malthus predicted mass hunger and starvation as diminishing returns limited agricultural output and the population continued to grow.
- Why did Malthus' prediction fail?

Index of Consum	d Capita		
	Year	Index	
	1948-1952	100	
	1960	115	
	1970	123	
	1980	128	
	1990	137	
	1995	135	
	1998	140	

Malthus and the Food Crisis

- The data show that production increases have exceeded population growth.
- Malthus did not take into consideration the potential impact of technology which has allowed the supply of food to grow faster than demand.
- Technology has created surpluses and driven the price down.

 Labor Productivity and the Standard of Living

Slide 31

- Consumption can increase only if productivity increases.
- Determinants of Productivity
 - Stock of capital
 - Technological change

Labor Productivity in Developed Countries

Developed Obuntiles							
	France	Germany	Japan	United Kingdom	United States		
	Output per Employed Person (1997)						
	\$54,507	\$55,644	\$46,048	\$42,630	\$60,915		
Annual Rate of Growth of Labor Productivity (%)							
1960-1973	3 4.75	4.04	8.30	2.89	2.36		
1974-198	6 2.10	1.85	2.50	1.69	0.71		
1987-199	7 1.48	2.00	1.94	1.02	1.09		
					slide 32		

Production with One Variable Input (Labor)

- Trends in Productivity
 - 1) U.S. productivity is growing at a slower rate than other countries.
 - 2) Productivity growth in developed countries has been decreasing.

Production with One Variable Input (Labor)

- Explanations for Productivity Growth Slowdown
 - 1) Growth in the stock of capital is the primary determinant of the growth in productivity.

Production with One Variable Input (Labor)

- Explanations for Productivity Growth Slowdown
 - Rate of capital accumulation in the U.S. was slower than other developed countries because the others were rebuilding after WWII.

Slide 35

Production with One Variable Input (Labor)

- Explanations for Productivity Growth Slowdown
 - 3) Depletion of natural resources

Slide 36

4) Environment regulations

- Observation
 - U.S. productivity has increased in recent years

Slide 37

Production with Two Variable Inputs

- There is a relationship between production and productivity.
- Long-run production *K*& *L* are variable.
- Isoquants analyze and compare the different combinations of K & L and output

Slide 38

Production with Two Variable Inputs

- Substituting Among Inputs
 - The slope of each isoquant gives the tradeoff between two inputs while keeping output constant.

Slide 43

Production with Two Variable Inputs • Substituting Among Inputs • The marginal rate of technical substitution equals: MRTS = - Change in capital/Change in labor input $MRTS = -\Delta K / \Delta L$ (for a fixed level of Q) Slide 44

Production with Two Variable Inputs

Fixed-Proportions Production Function

- Observations when inputs must be in a fixed-proportion:
 - To increase output requires more labor and capital (i.e. moving from A to B to C which is technically efficient).

Slide 55

Returns to Scale

- Measuring the relationship between the scale (size) of a firm and output
 - Increasing returns to scale: output more than doubles when all inputs are doubled
 - ◆Larger output associated with lower cost (autos)
 - •One firm is more efficient than many (utilities)

The isoquants get closer together

Summary

 Average product of labor measures the productivity of the average worker, whereas marginal product of labor measures the productivity of the last worker added.

Summary

• The *law of diminishing returns* explains that the marginal product of an input eventually diminishes as its quantity is increased.

Summary

- Isoquants always slope downward because the marginal product of all inputs is positive.
- The standard of living that a country can attain for its citizens is closely related to its level of productivity.

Slide 65

Summary

In long-run analysis, we tend to focus on the firm's choice of its scale or size of operation.