Derivation of OLS Estimators in a Simple Regression

1 A Simple Regression Model with Both Intercept and Slope

Consider the model
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The first-order conditions (FOCs) are
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From equation (3) one can obtain
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which leads to
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From equation (4) one can obtain
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Plug (6) into (7):
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Combine equations (6) and (8), we have the estimators
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Note that b, has several equivalent but different forms, including
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You can prove that equations (8), (11), and (12) are equivalent.
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2 A Simple Regression Model with Slope Only

If there is no intercept, i.e., f; =0, the model becomes

Ve :ﬁzxt +e;.
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The sum of errors squared
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The first-order derivative is
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which leads to
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3 A Simple Regression Model with Intercept Only
If there is no slope (no x variable), i.e., . =0, the model becomes
y:=Pi+e;. (18)
The sum of errors squared
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The first-order derivative is
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