Biology 198
PRINCIPLES OF BIOLOGY
Answers to Hardy-Weinberg practice questions
Updated: 21 August 2000
Remember the basic formulas:
p2 + 2pq + q2 = 1 and p + q = 1
p = frequency of the dominant allele in the population
q = frequency of the recessive allele in the population
p2 = percentage of homozygous dominant individuals
q2 = percentage of homozygous recessive individuals
2pq = percentage of heterozygous individuals
You have sampled a population in which you know that the percentage of the homozygous recessive genotype (aa) is 36%. Using that 36%, calculate the following:
Sickle-cell anemia is an interesting genetic disease. Normal homozygous individials (SS) have normal blood cells that are easily infected with the malarial parasite. Thus, many of these individuals become very ill from the parasite and many die. Individuals homozygous for the sickle-cell trait (ss) have red blood cells that readily collapse when deoxygenated. Although malaria cannot grow in these red blood cells, individuals often die because of the genetic defect. However, individuals with the heterozygous condition (Ss) have some sickling of red blood cells, but generally not enough to cause mortality. In addition, malaria cannot survive well within these "partially defective" red blood cells. Thus, heterozygotes tend to survive better than either of the homozygous conditions. If 9% of an African population is born with a severe form of sickle-cell anemia (ss), what percentage of the population will be more resistant to malaria because they are heterozygous (Ss) for the sickle-cell gene? Answer: 9% =.09 = ss = q2. To find q, simply take the square root of 0.09 to get 0.3. Since p = 1 - 0.3, then p must equal 0.7. 2pq = 2 (0.7 x 0.3) = 0.42 = 42% of the population are heterozygotes (carriers).
There are 100 students in a class. Ninety-six did well in the course whereas four blew it totally and received a grade of F. Sorry. In the highly unlikely event that these traits are genetic rather than environmental, if these traits involve dominant and recessive alleles, and if the four (4%) represent the frequency of the homozygous recessive condition, please calculate the following:
Within a population of butterflies, the color brown (B) is dominant over the color white (b). And, 40% of all butterflies are white. Given this simple information, which is something that is very likely to be on an exam, calculate the following:
Answers: The first thing you'll need to do is obtain p and q. So, since white is recessive (i.e. bb), and 40% of the butterflies are white, then bb = q2 = 0.4. To determine q, which is the frequency of the recessive allele in the population, simply take the square root of q2 which works out to be 0.632 (i.e. 0.632 x 0.632 = 0.4). So, q = 0.63. Since p + q = 1, then p must be 1 - 0.63 = 0.37. Now then, to answer our questions. First, what is the percentage of butterflies in the population that are heterozygous? Well, that would be 2pq so the answer is 2 (0.37) (0.63) = 0.47. Second, what is the frequency of homozygous dominant individuals? That would be p2 or (0.37)2 = 0.14.
A rather large population of Biology instructors have 396 red-sided individuals and 557 tan-sided individuals. Assume that red is totally recessive. Please calculate the following:
A very large population of randomly-mating laboratory mice contains 35% white mice. White coloring is caused by the double recessive genotype, "aa". Calculate allelic and genotypic frequencies for this population. Answer: 35% are white mice, which = 0.35 and represents the frequency of the aa genotype (or q2). The square root of 0.35 is 0.59, which equals q. Since p = 1 - q then 1 - 0.59 = 0.41. Now that we know the frequency of each allele, we can calculate the frequency of the remaining genotypes in the population (AA and Aa individuals). AA = p2 = 0.41 x 0.41 = 0.17; Aa = 2pq = 2 (0.59) (0.41) = 0.48; and as before aa = q2 = 0.59 x 0.59 = 0.35. If you add up all these genotype frequencies, they should equal 1.
After graduation, you and 19 of your closest friends (lets say 10 males and 10 females) charter a plane to go on a round-the-world tour. Unfortunately, you all crash land (safely) on a deserted island. No one finds you and you start a new population totally isolated from the rest of the world. Two of your friends carry (i.e. are heterozygous for) the recessive cystic fibrosis allele (c). Assuming that the frequency of this allele does not change as the population grows, what will be the incidence of cystic fibrosis on your island? Answer: There are 40 total alleles in the 20 people of which 2 alleles are for cystic fibrous. So, 2/40 = .05 (5%) of the alleles are for cystic fibrosis. That represents p. Thus, cc or p2 = (.05)2 = 0.0025 or 0.25% of the F1 population will be born with cystic fibrosis.
You sample 1,000 individuals from a large population for the MN blood group, which can easily be measured since co-dominance is involved (i.e., you can detect the heterozygotes). They are typed accordingly:
|
|
|
|
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
Using the data provide above, calculate the following:
MM (0.49) | MN (0.42) | NN (0.09) | |
---|---|---|---|
MM (0.49) | 0.2401* | 0.2058 | 0.0441 |
MN (0.42) | 0.2058 | 0.1764* | 0.0378 |
NN (0.09) | 0.0441 | 0.0378 | 0.0081* |
Note that three of the six possible crosses are unique (*), but that the other three occur twice (i.e. the probabilities of matings occurring between these genotypes is TWICE that of the other three "unique" combinations. Thus, three of the possibilities must be doubled.
MM x MM = 0.49 x 0.49 = 0.2401
MM x MN = 0.49 x 0.42 = 0.2058 x 2 = 0.4116
MM x NN = 0.49 x 0.09 = 0.0441 x 2 = 0.0882
MN x MN = 0.42 x 0.42 = 0.1764
MN x NN = 0.42 x 0.09 = 0.0378 x 2 = 0.0756
NN x NN = 0.09 x 0.09 = 0.0081
MM x MM = 1.0 MM
MM x MN = 0.5 MM 0.5 MN
MM x NN = 1.0 MN
MN x MN = 0.25 MM 0.5 MN 0.25 NN
MN x NN = 0.5 MN 0.5 NN
NN x NN = 1.0 NN
Cystic fibrosis is a recessive condition that affects about 1 in 2,500 babies in the Caucasian population of the United States. Please calculate the following.
In a given population, only the "A" and "B" alleles are present in the ABO system; there are no individuals with type "O" blood or with O alleles in this particular population. If 200 people have type A blood, 75 have type AB blood, and 25 have type B blood, what are the alleleic frequencies of this population (i.e., what are p and q)? Answer: To calculate the allele frequencies for A and B, we need to remember that the individuals with type A blood are homozygous AA, individuals with type AB blood are heterozygous AB, and individuals with type B blood are homozygous BB. The frequency of A equals the following: 2 x (number of AA) + (number of AB) divided by 2 x (total number of individuals). Thus 2 x (200) + (75) divided by 2 (200 + 75 + 25). This is 475/600 = 0.792 = p. Since q is simply 1 - p, then q = 1 - 0.792 or 0.208.
The ability to taste PTC is due to a single dominate allele "T". You sampled 215 individuals in biology, and determined that 150 could detect the bitter taste of PTC and 65 could not. Calculate all of the potential frequencies. Answer: First, lets go after the recessives (tt) or q2. That is easy since q2 = 65/215 = 0.302. Taking the square root of q2, you get 0.55, which is q. To get p, simple subtract q from 1 so that 1 - 0.55 = 0.45 = p. Now then, you want to find out what TT, Tt, and tt represent. You already know that q2 = 0.302, which is tt. TT = p2 = 0.45 x 0.45 = 0.2025. Tt is 2pq = 2 x 0.45 x 0.55 = 0.495. To check your own work, add 0.302, 0.2025, and 0.495 and these should equal 1.0 or very close to it. This type of problem may be on the exam.
What allelic frequency will generate twice as many recessive homozygotes as heterozygotes? Answer: We need to solve for the following equation: q2 (aa) = 2 x the frequency of Aa. Thus, q2 (aa) = 2(2pq). Or another way of writing it is q2 = 4 x p x q. We only want q, so lets trash p. Since p = 1 - q, we can substitute 1 - q for p and, thus, q2 = 4 (1 - q) q. Then, if we multiply everything on the right by that lone q, we get q2 = 4q - 4q2. We then divide both sides through by q and get q = 4 - 4q. Subtracting 4 from both sides, and then q (i.e. -4q minus q = -5q) also from both sides, we get -4 = -5q. We then divide through by -5 to get -4/-5 = q, or anotherwards the answer which is 0.8 =q. I cannot imagine you getting this type of problem in this general biology course although if you take algebra good luck.
Return back to the previous page
Home | Search | What's
New | Help | Comments
Kansas State University | Biology Division