Analysis of interval timing in two discounting procedures

Andrew T. Marshall Kimberly Kirkpatrick Department of Psychology Kansas State University

Outline

Background

- The connection between interval timing and discounting
- Data
 - Delay discounting (Experiment 1)
 - Probability discounting (Experiment 2)
- Directions and implications

Interval Timing and Discounting

Interval timing

The timing of durations on a seconds-to-minutes scale

Discounting

- Delay discounting
 - Reduction in value of an outcome as the **delay** to its receipt increases
- Probability discounting
 - Reduction in value of an outcome as the odds against its receipt increases

Interval Timing and Discounting

- Scalar Expectancy Theory and Weber's Law in Animal Timing (Gibbon, 1977)
 - "...preference shifts toward the larger reward as the absolute amount of time preceding both rewards is lengthened. This corresponds in the theory to S/C approaching 1.0 so that the reinforcement differential, β, more nearly determines choice."
- The scalar property of timing can account for hyperbolic discounting (Cui, 2011)

Interval Timing and Discounting

- Theoretical connection between interval timing and discounting
- Absence of empirical interval timing analyses in studies of discounting
 - But see Galtress, Garcia, & Kirkpatrick (in press)
- How does interval timing factor into the choice behavior in discounting tasks?
- Secondary data analysis on two discounting tasks

Experiment 1: Delay Discounting

Method

- 18 male Sprague-Dawley rats
 - Differential rearing environments
 - Enriched environment (n=9)
 - Isolated environment (n=9)

Procedure

- Delay discounting task (see Green & Estle, 2003)
 - Choice between a smaller-sooner (SS) reward and a larger-later (LL) reward
 - SS: 1 pellet in 10 s
 - LL: 2 pellets in 30 s
 - 3 session blocks
 - 16 forced-choice trials / block
 - 30 free-choice trials / block
 - 4 peak-interval trials / block
 - Different trials presented in random order

Procedure: Peak interval trials

Data Analysis: Low-high-low algorithm

- Peak-interval individual trials
 - Low state of responding -> high state -> low state
- Low-high-low (LHL) algorithm calculates the time at which the low-high and high-low transitions occur

Church, Meck, and Gibbon (1994)

Data Analysis: Strategies

- Determine if measures of timing behavior relate to the choices made in a delay discounting task
- Measuring choice behavior
 Proportion of choices for the LL outcome

Results:

Proportion of choices for the LL outcome as a function of rearing environment

KANSAS STATE UNIVERSITY - DEPARTMENT OF PSYCHOLOGY

EC-SS IC-SS EC-LL EC-SS

Results:

Responses per minute (RPM) in free-choice, forced-choice, and peak-interval trials

- Ratio of SS delay to LL delay
 - Gibbon (1977)
- Relationship between SS and LL peak-trial timing and choice behavior
 - Stop times
 - Hierarchical multiple regression

Predictor	ΔR^2	β
Step 1	.03	
Rearing condition		16
Step 2	.26	
Z _{SS Stop} Time		30
Z _{LL Stop} Time		.58
Step 3	.19	
Z _{SS Stop Time} x Z _{LL Stop Time}		.56
Total \mathbb{R}^2	.47	
n	18	

Predictor	ΔR^2	β	
Step 1	.03		
Rearing condition		16	
Step 2	.26		
Z _{SS Stop Time}		30	
Z _{LL Stop Time}		.58	<i>p</i> = .043
Step 3	.19		
Z _{SS Stop Time} x Z _{LL Stop Time}		.56	
Total R^2	.47		
n	18		

Predictor	ΔR^2	β
Step 1	.03	
Rearing condition		16
Step 2	.26	
Z _{SS Stop Time}		30
Z _{LL Stop Time}		.58
Step 3	.19	
$Z_{SS Stop Time} \ge Z_{LL Stop Time}$.56 <i>p</i> = .051
Total <i>R</i> ²	.47	
n	18	

Probing the interaction

- Simple slopes analysis
 - (Aiken & West, 1991)
- The relationship between LL stop time and LL choice behavior at early, mean, and late SS stop times

- Later stop times
 Less precision in timing the SS and LL delays
- Relationship between LL timing and LL choice behavior may be modulated by timing of the SS

Discussion

• Gibbon (1977)

Ratio of SS and LL durations affects choice

Present experiment

- Timing of SS and LL may be related to choice behavior in a delay discounting task
- Individual differences
 - Interval timing and reward magnitude sensitivity

Experiment 2: Probability Discounting

Probabilistic reward

• Delay until a larger probabilistic reward may be comparable to the time until the larger delayed reward in delay discounting

Rachlin, Logue, Gibbon, and Frankel (1986)

• How may interval timing affect probability discounting?

Method

- 24 male Sprague-Dawley rats
 Pair-housed
- Probabilistic-choice procedure
 - Certain reward: 1 or 3 pellets
 - Uncertain reward: 3 or 9 pellets
 - P(uncertain reward) = **.1**, **.33**, **.67**, **.9**
 - FI-20 s between choice and food availability time

Data Analysis

- Choice behavior
 - Proportion of choices for the uncertain outcome
- Response timing
 - Start time in FI-20
- Determine if timing behavior is related to choices in a probability-discounting task

Responses per minute for certain and uncertain choices as a function of p(uncertain food)

CertainUncertain

Results:

Results: Start times for certain and uncertain choices as a function of p(uncertain food)

Discussion

- Choice behavior
 - Probability of food
- Response timing
 - The probability of food delivery affects response rate, not response timing
 - Millenson, Kehoe, and Gormezano (1977); Roberts (1981); Zeiler (1972)
 - Response timing was similar across probabilities of uncertain food
 - Response rate was affected by the probability of uncertain food and the choice that was made
- Start times vs. stop times

General Discussion

- Interval timing and delay discounting
 Timing deficits or response perseveration?
- Interval timing and probability discounting
 - Timing may not be a factor as the delay to the certain and uncertain outcomes were the same
- Implications and future directions
 - Timing behavior in future analyses of delay discounting
 - Behavioral interventions
 - Temporal sensitivity/precision may be critical
 - Currently: Improving timing in the form of inhibiting an impulsive action to respond (DRL)

Acknowledgments

- Drs. Kimberly Kirkpatrick, Tiffany Galtress, Mary Cain
- Members of the Kirkpatrick and Cain laboratories
- My rats

Questions?

