

Resistant Starch – A Comparative Nutrition Review

James M. Lattimer Ph.D., PAS Assistant Professor Animal Sciences & Industry

Personal Background Education

- B.S. Kansas State University
 Animal Sciences & Industry
- M.S. Oklahoma State University
 - Equine Nutrition
- Ph.D. Kansas State University
 - USDA Fellow Nutrition + Grain Science
 - Comparative Nutrition Humans + Monogastric Animals

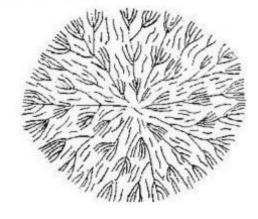
Research and Extension

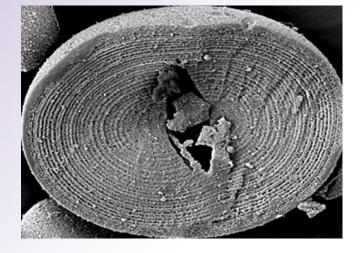
Knowledge ^{for}Life

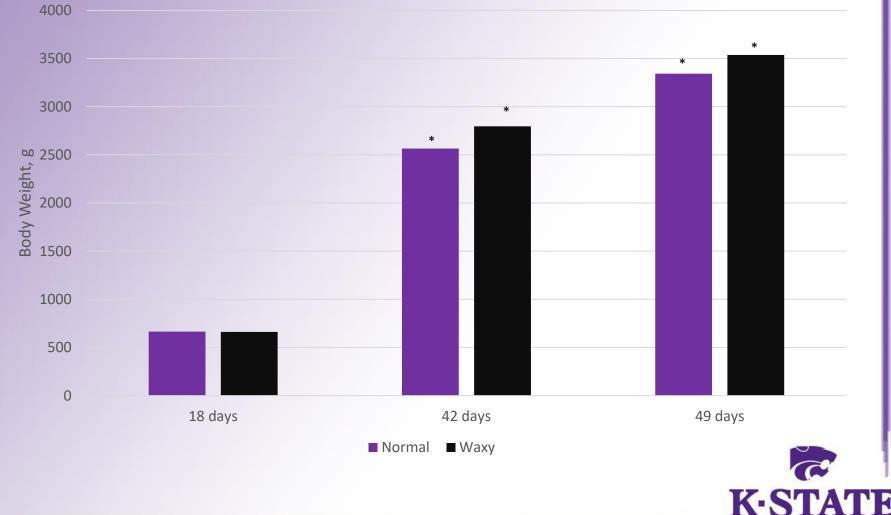
Personal Background Professional

- Technical Nutritionist Nestle Purina
 - Began as nutritionist for Friskies, Purina One and Pro plan
- Managed Purina Veterinary Diet product formulation and development
- Assistant Professor Kansas State University
 - Equine Nutrition
 - Broad comparative research program
 - Digestive physiology, microbiome

Research and Exte


Starch


- Polysaccharides of alpha 1-4 and 1-6 linkages
- Starch granule consists of amylose and amylopectin
 - Amylose linear polymer
 - Amylopectin highly branched polymer



Effect of Waxy Corn on Broiler Performance Collins et al. (2003)

Kno

ge

Research and Extension

Types of Starch Based on Hydrolysis

- Rapidly Digestible Starch
 - Converted to glucose within 20 minutes of enzyme digestion i.e. cooked starch in a potato
- Slowly Digestible Starch
 - Completely digested in the SI but slower than RDS i.e. raw starch in a cereal grain
- Resistant Starch
 - Completely amylase resistant

Resistant Starch

- Fraction of starch which resists hydrolysis in the small intestine
- Thus, reaching the large intestine to undergo fermentation via the gut microbiome
 - Similar to a soluble, fermentable fiber
- Naturally found in
 - Cereal grains
 - Vegetables
 - Legumes
- Also synthetically made

Types of Resistant Starch

- Type 1
 - Inaccessible starch within cell wall other food matrixes
- Type 2
 - Native starch granules protected from digestion due to structure of the granule itself
- Type 3
 - Retrograded or nongranular starch formed after cooking and cooling
- Type 4
 - Chemically modified starch (cross linked, esterified, etc)
- Type 5

Amylose-lipid complex resistant to swelling and hydrolysis

Research and Extension

Is resistant starch an ingredient?

Knowledge Julian vitro digestibility of starch in a variety of foods (BNF 1990)

Food	% RDS	% SDS	% RS1	% RS2	% RS3
Flour, white	38	59	-	3	Traces
Bread, white	94	4	-	-	2
Peas, cooked	56	24	11	Traces	6
Kidney beans, cooked	25	-	-	15	60

Is resistant starch still resistant starch after extrusion or retort?

Nutritional Implications of RS

- Increased laxation/fecal bulking
- Prebiotic

Improved gut health

- Reduced postprandial glycemia/insulinemia
- Reduced caloric density
 - While maintaining acceptable mouth feel
- Improved serum lipid profile

Laxation/Fecal Bulking

Murray et al. (1998)

- Fecal wet and dry weights increased 75% for dogs consuming a RS diet when compared to the control
 - Dry weights approximately 59 g/d greater

Laxation/Fecal Bulking

- Contradicting data regarding fecal quality
- Feces from dogs receiving RS diet were better formed (Murray et al., 1998)
- Inverse relationship between fecal score and RS supplementation (Goudez et al., 2011)
 - But only occurred in large breeds; small breeds were unaffected

RS as a Prebiotic

- RS is fermented by hindgut microflora
 Provides energy to 100's of bacterial species
- Produces SCFA (or VFA)
 - Acetate, propionate and butyrate
 - RS produces a high proportion of butyrate

RS as a Prebiotic

- Butyrate is the major energy substrate for colonocytes
- Butyrate inhibits initiation and growth of colon tumors
- Fermentable substrates promote the growth of commensal microflora
 - Lactobacilli and bifidobacteria

RS Improves Luminal Environment

Nofrarias et al. (2007)

- 16 pigs fed raw potato starch (RPS) or corn starch (CS) for 14 wks
- Observations (P < 0.05) in RPS pigs
 - Colon butyrate concentration was two-fold higher
 - Reduced apoptosis in intestinal crypts
 - Increase mucin sulfatation
 - Indicates greater mucin maturity and increased protection of intestinal epithelium
 - Reduced luminal magnesium
 - Associated with reduced epithelial cell damage
 - Lower colonic pH


Symbiotic with Probiotics

- Probiotics encapsulated to protect against environmental and GI factors
- Iyer and Kailasapthy (2005)
 - Hi-maize[™] provided maximum protection when compared to Raftiline[®] and Raftilose[®]
 - Viable counts of Lactobacillus increased significantly
 - Significantly increased survivability under in vitro acidic and bile salt conditions

Improve Glucose/Insulin Kinetics

- Many studies show decreased postprandial blood glucose and insulin due to RS
 - Most fail to maintain equal amount of available carbohydrate
- Al-Tamimi et al. (2010) controlled for non starch ingredients and available CHO
 - 80 g RS4 significantly reduced postprandial glucose and insulin levels

Weight Management

- Reducing caloric intake
 - Reduced caloric density of the diet
 - Increased satiety
 - Increase luminal viscosity
- Caloric value is almost half that of digestible starch
 - 1.9 kcal vs. 3.6 kcal
 - SCFA yield approximately 60-70% of the caloric value of glucose

Reduced Caloric Intake

- Pigs consuming 35% pregelatinized starch (PS) or 34% retrograded starch (RS) (Souza da Saliva et al., 2014)
 - RS diet resulted in a 3% reduction in ME intake and less time at the feeder
- Adults consuming 48 g of RS or placebo (Bodinham et al., 2009)
 - RS diet resulted in in a 10% reduction in 24 h caloric intake

Altered Lipid Metabolism

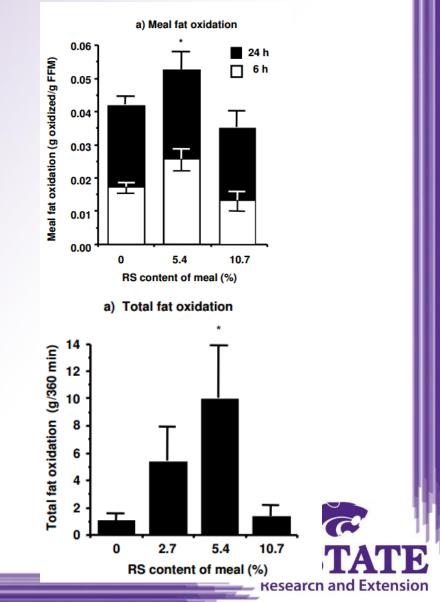
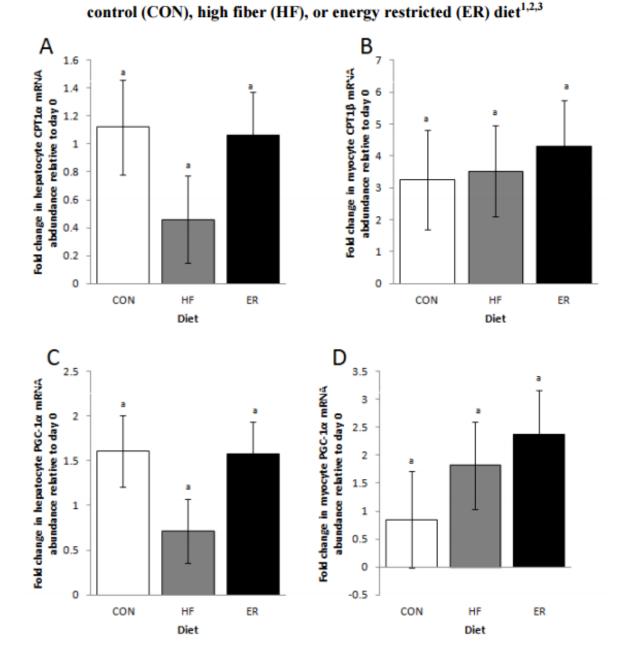
- Many studies show improved lipid metabolism with RS containing diets
 - Decreased LDL and total cholesterol
 - Decreased TG

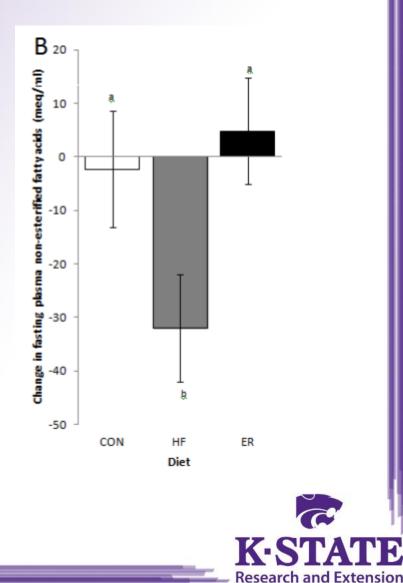
Conflicting data – many studies show TG increasing
 Decreased NEFA

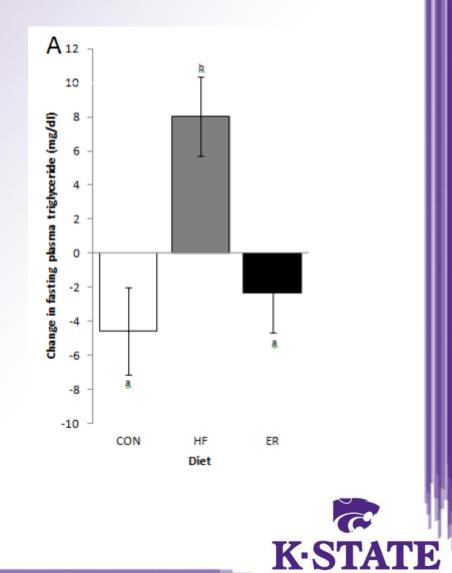
- Many fail to maintain isocaloric diets
 - Unable to make inferences is it the RS or simply a decrease in caloric intake

Altered Lipid Metabolism - Mechanisms

- Increased post prandial fat oxidation (PPFO)
 - 5.4% RS increased PPFO by 23% (Higgins et al., 2004)
 - 10.7% had no effect
 - Howe et al. (1996) found no effect on fat oxidation due to RS over a 10 wk period


Figure 2.8. Fold change in hepatocyte CPT1 α (A), mycocyte CPT1 β (B), hepatocyte PGC-1 α (C), and myocyte PGC-1 α (D) mRNA abundance relative to day 0 in gilts after 42 d of a


Altered Lipid Metabolism - Mechanisms

- Decreased circulating NEFA concentrations
 - Decreased competition with glucose
- Increased bile secretion
 - Reducing total and LDL cholesterol

Altered Lipid Metabolism

- Several studies show an increase in plasma TG levels
- Likely due to increased de novo lipogenesis via increased acetate

Research and Extension

Implications of RS in Pet Food

- Effective prebiotic and synergistic with probiotics

 Gut health claim?
- Decreased caloric density
 - Weight maintenance diets
- Attenuates postprandial glycemia/insulinemia
 - Therapeutic vet diets
- Alters serum lipid profile
 - Therapeutic vet diets
- Enhanced texture and acceptability

Implications of RS in Pet Food

- How much RS does it take to make a claim?
- Does its efficacy really differ to that of a soluble fiber
 - Cheaper options
- Will consumers accept it?
 - Starch is a four letter word
- Does it comply to "natural" products?

Questions

