Research from value added analytical matter

Benjamin Katz Pet Food Innovation Workshop September 14th 2016

Acknowledgements

PI : Dr. John Tomich

Dr. Takeo Iwamoto Nozomi M. Caton Deane Lehman Susan Whitaker

Past Students

Kelsey Pearson (Nursing) Jammie Layman (Law School) Kyle Steuber (Nutrisciences) Jared Wilmoth (Grad School) Marlena Birkel (Pharm School) Denise Cobb (Grad School) Macy Garcia

Current Students

Will Smith Emily Wedeman Kayla Wilkinson Cassidy Frost Dr. George Wang Dr. Sunghun Park Tzu-Yu Chen Soyoung Lim Jianteng Xu Xiaoyu Su Yanting Shen

Dr. Ying Fang Rui Guo Thomas Gallagher

External Mike Molitor (U.Wisc. Madison) Dan Abitz (GBA Engineering)

Supported by

Johnson Cancer Center Kansas State University

Kansas State University Biotech Core

- Non-Profit initiative in the Vice President for Research Office.
- Work with >70 KSU investigators in a wide range of disciplines.
- Facilitate collaboration between academy and industry.
- Goal: Help promote new product design and entrepreneurship in the Midwest.

Kansas State University Biotech Core

Equipment

- Analytical and Preparative HPLC
- MALDI-TOF and ESI-MS/MS
- Proteomics and Metabolomics
- Wet Lab, Roto-vap Distillation, Lyophilization
- Microbiology culture, Fermentation Scale up
- Super Critical Fluid Extraction and Spray Drying

• Types of Projects

- Animal Nutrition and Disease
- Food and Human Health
- Agricultural Crops: Pest, Disease and Tolerance
- Biosecurity BSL3ag support: Animal and Zoonosis
- Fundamental Biology and Ecology
- Classical Chemistry and Peptide Synthesis

Analyzing "Enriched" Protein Products

- Fingerprinting hydrolysates for peptides signature
 - Using MALDI-TOF
 - Like Bruker Biotyper for microbes
- Link nutrition information to product name
 - Enriched with...
 - (Glutamine, BCAA, Sulfur AA...etc)
 - Blending example: Enriched Sunflower Meal

Outline of Talk

- By-product protein streams
- Negative image from consumers
- Rational design of hydrolysates
- Analytical service offered by KSU biotech core
- Controlling waste stream consistency
- Fingerprinting hydrolysates in blends
- Examples from industry

Grain Storage Proteins (prolamins)

- Great source of metabolic energy
- Essential source of nitrogen and sulfur rich amino acids
- Inherent poor digestibility
- Due to low/missed cleavage site by digestive enzymes
- Presences of trypsin inhibitors
- Negative image as cheap filler

Negative image from consumers

Consumer have been taught to <u>AVOID</u>:

- SOY FLOUR, WHOLE WHEAT FLOUR, CORN, CORN GLUTEN MEAL
- WHEAT BRAN, BREWER'S RICE, POTATO PRODUCT, MIDDLINGS/MIDS or MILL RUN of any kind.
- Unspecified grain sources like CEREAL FOOD FINES, CORN BRAN, OAT HULLS, RICE HULLS, PEANUT HULLS, DISTILLERS GRAIN FERMENTATION SOLUBLES, and CELLULOSE
- MEAT AND BONE MEAL, ANIMAL DIGEST from "4D" animals

Examples of protein by-products

- Corn Gluten Meal
 - Roquette America \$520.00/ton FOB IOWA
 - 60% Protein @ 43c/lb protein
 - Zein prolamin proteins
- Wheat Midds, dried
 - ADM \$88.00/ton FOB Kansas
 - 16% Protein @ 28c/lb protein
 - Gliadin prolamin proteins

Waste Streams updated list

Prolamin processing

- Soluble in ~70% ethanol
- Difficult processing due to aggregation
- Insoluble aggregate floats and sink in water
 Heavy and light fractions
- Difficult for enzymes to access cleavage sites
- Processing can cause bad flavors
- Denatured proteins cleave differently

Rational Prolamin Processing

- Utilize fungal/plant/bacterial enzymes
 - Able to cleave proteins at unique sites
 - Proteases
 - Help solubilized bulk protein
 - Endo & exo peptidases
 - Tailor flavor by eliminate low threshold taste modulators
 - Improve nutrition

Amino Acid Nutrition

Rational Prolamin Processing

- Use analytical data to create multiple enzyme processes.
 - Eliminate known bad flavors and indigestible fragments
 - Completely digest into di/tri peptide supplements
 - Use PepT1 transporter for animal specific nutrition
 - Tailor peptide enrichment to specific markets
 - High glutamine & branch chain amino acids. (muscle energy)
 - High methionine & sulfur rich amino acids. (hair, skin and milk)
- Create peptide fingerprint of final product for QC
 Check starting materials and in-line processes

Analytical Service Provided

- ID proteins in by-products by MS1 mass
- Evaluate enzyme choices for desired product
- Fingerprint peptide signature of hydrolysates
- Analyze for AA length and content
- Link peptides to flavor and nutrition
- Track peptide fingerprints after blending

MALDI-TOF mass spectrometry

- Provides exact mass of proteins and peptides.
- Higher accuracy of intact large protein than 1D gels
- Better resolution of similar protein subunits
- Faster data acquisition with ability to automate

- Corn Gluten Meal from corn syrup manufacturing
- Food grade 60% zein protein waste
- High in glutamine and proline
- Alpha and gamma Zein
 - High in BCAA
 - Leucine, Isoleucine & Valine
- Beta and delta Zein
 - High in sulfur containing AA
 - Methionine

Remove excess oil, color and and other hydrophobic impurities with 95% Ethanol.

Can further purify with hexane/ethanol blends depending on quality.

Ethanol can be distilled and reused

Biotech Core Instagram

• Repetitively extract prolamins in 70% ethanol.

• Can tailor ethanol % for desired protein composition.

 Purification and extraction may not be required for some products.

Biotech Core Instagram

Maize prolamins

20000 22000 24000 26000 28000

- Soluble Zein proteins aggregate and precipitate in water.
- Add to pH adjusted water with 0.1-1% enzyme protease.
- Keep final ethanol concentration at ~20%
 - Engineered food enzymes are still active.
 - Prevents microbial growth.
 - Helps solubilize peptides to improve accessibility.

Food Grade Enzyme Examples

- Promod[™] 24L Biocatalysts
 - Bacterial broad spectrum protease
- ENZECO[®] Dual Enzyme Development Corp.
 - Bromelain and Papain from meat tenderizing
- Protamex[®] Novozyme
 - Bacillus sp. bacterial protease from fish processing
- Flavourzyme Novozyme
 - Protease and peptidase preparation from Aspergillus oryzae culture.
 - Complex mix of at least 8 enzymes

CGM Double Digest Example

Promod 24L Protamex Enzco Zein Extract IL PROMOS 24/L When 29 Protamen

- Digest Zein with first protease until aggregate is broken.
- Digest with secondary enzyme, Flavourzyme, until entire solution is liquefied.
- Monitor hydrolysates process by MALDI-TOF fingerprinting.

Analytical Procedure

- Dilute 10uL of hydrolysate into:
 - 100uL of Acetonitrile and 90uL 1% TFA in water.
- Spot 1uL extract to MALDI-TOF
 - Use DHB matrix for peptide fingerprinting.

Biotech Core Instagram

CGM Double Digests

Why double digests?

Measuring improved digestibility

Double digests of CGM Zein

Comparing different Zein sources

Unique bulk filler sources

- Canola meal
 - \$191/ton FOB from ADM
 - 36% protein
 - Accepted as a grain-free nutrient source.
- Sunflower meal
 - \$280.00/ton FOB from CPE Feeds Inc Texas
 - 30% protein
 - High in methionine, adds great flavor.

Blending with Filler

- New naming of product
 - Hydrolysate enrich by-products
 - "Protein enriched"
- Example product:
 - 3 parts Sunflower Meal : 1 part CGM hydrolysate
- Mix and heat extrude to kill enzymes
- Rename as "Enriched sunflower meal"
- GRAS due to all source ingredients being GRAS

Tracking peptides thru blending

CGM Enriched Products

- Turns high protein by-products into digestible nutrition without changing GRAS status.
- Masks the source of protein hydrolysates by blending into alternative sources.
- Analytical data used to normalize by-product streams.
- QC data can be used by plant manager to assign CAS#'s for new enrich products.

Acknowledgements

PI : Dr. John Tomich

Dr. Takeo Iwamoto Nozomi M. Caton Deane Lehman Susan Whitaker

Past Students

Kelsey Pearson (Nursing) Jammie Layman (Law School) Kyle Steuber (Nutrisciences) Jared Wilmoth (Grad School) Marlena Birkel (Pharm School) Denise Cobb (Grad School) Macy Garcia

Current Students

Will Smith Emily Wedeman Kayla Wilkinson Cassidy Frost Dr. George Wang Dr. Sunghun Park Tzu-Yu Chen Soyoung Lim Jianteng Xu Xiaoyu Su Yanting Shen

Dr. Ying Fang Rui Guo Thomas Gallagher

External Mike Molitor (U.Wisc., Madison) Dan Abitz (GBA Engineering)

Supported by

Johnson Cancer Center Kansas State University

Example 2: Gluten hydrolysate project

- Goal: Increase solubility in water
- Shorten peptide length for absorption
- Cleave known peptide epitopes and reduce bitterness

Full Analytical Extraction Protocol

- 50mg of spray dried hydrolysate was defatted in CHCl₃/MeOH/Water and freeze dried.
- Freeze dried samples were split into 4 fractions and resolubilized.
 - Fraction 1: w/ 0.1%TFA
 - Fraction 2: w/ 25% Acetonitrile : 75% 0.1% TFA
 - Fraction 3: w/ 50% Acetonitrile : 50% 0.1%TFA
 - Fraction 4: w/ 75% Acetonitrile : 25% 0.1%TFA
- Fractions were centrifuged and supernatant was collected and pooled.

Raw MALDI-MS data of Pooled Sample

Peptide fractionation and distribution

- Pooled extracts were freeze dried and solubilized in 0.1% TFA for HPLC and Mass Spec (MS) analysis.
- HPLC was run on a 250 mm x 4.6 mm C4 column with Acetonitrile as the mobile phase.
- Two distinct broad peaks were collected and analyzed by MALDI-TOF MS.

C4 HPLC of pooled extract

HPLC MALDI-MS data of Peak 1 & 2

Single enzyme Solubilization and Dispersion of Gluten

E1 E2 E3 E4 E5 P1 Gluten only

- All enzymes are at 1% w/w of gluten.
- E1, E4 and P1 were best at dispersing the gluten peptides after 24hrs of settling.
- E2 & E3 produced peptide rich soluble fractions but were unable to disperse large amount of gluten peptides.
- An enzyme combination strategy is necessary to both disperse and solubilize gluten peptides.

HPLC comparison of Enzyme Combos

Example 2: Gluten hydrolysate project

- Decreased insoluble precipitates by >300%
 - 27% w/v to 8% w/v
- Shorten peptide length for absorption
- Cleaved known peptide epitopes
- Reduced Bitterness

Acknowledgements

PI : Dr. John Tomich

Dr. Takeo Iwamoto Nozomi M. Caton Deane Lehman Susan Whitaker

Past Students

Kelsey Pearson (Nursing) Jammie Layman (Law School) Kyle Steuber (Nutrisciences) Jared Wilmoth (Grad School) Marlena Birkel (Pharm School) Denise Cobb (Grad School) Macy Garcia

Current Students

Will Smith Emily Wedeman Kayla Wilkinson Cassidy Frost Dr. George Wang Dr. Sunghun Park Tzu-Yu Chen Soyoung Lim Jianteng Xu Xiaoyu Su Yanting Shen

Dr. Ying Fang Rui Guo Thomas Gallagher

External Mike Molitor (U.Wisc., Madison) Dan Abitz (GBA Engineering)

Supported by

Johnson Cancer Center Kansas State University

Other projects and services

- Purple tomato and sweet potato anthocyanins
 - Discovering new small molecule with ESI-MS/MS

- PRRS virus using nanotubes for intercellular spread
 - Protein ID and Mapping

Anthocyanin Rich Sweet Potatoes and Tomatoes

Good dietary antioxidants for cancer prevention specifically colorectal cancer.

Structures of common anthocyanidins and anthocyanins

R₃ = Glucose, galactose, rhamnose, xylose, or arabinose

Cyanidin = 287.2 g/mol Malvindin = 331.3 g/mol

C18 Reverse phase HPLC separation of a methanolic extract

PhD Thesis. Xiaoyu Su. Kansas State University 2014

Dissecting the ESI-MS/MS daughter ions

Discovering unknowns by fragmentation pattern

Peak 6: malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside

Porcine reproductive and respiratory syndrome virus utilizes nanotubes

for intercellular spread.

Rui Guo, Benjamin B. Katz, et al. In Press Journal of Virology. 2016

Myosin II Identification using In-gel Trypsin Digestion with MALDI-TOF

Sequence - >gi/635102017/ref|XP_007973837.1| PREDICTED: myosin-9 [Chlorocebus sabaeus]

Accession			Length			Mo. Mass			Av. Mass		Coverage			Matched Int.	
				19	960	2	228713.77			228853.49		88.2	%		59.3 %
MAQQAADKYL	YVDKNFINNP	LAQAD	WAAKK	LVWVPSDKSG	FEPASLKEEV	GEEAIVELVE	NGKKVKV	/NKD	DIQKMNPPKF	SKVEDMAELT	CLNEASVLHN	LKERYYSGLI	YTYSGLFCVV	INPYKNLPIY	
SEEIVEMYKG	KKRHEMPPHI	YAITD	TAYRS	MMQDREDQSI	LCTGESGAGK	TENTKKVIQY	LAYVASS	SHKS	KKDQGELERQ	LLQANPILEA	FGNAKTVKND	NSSRFGKFIR	INFDVNGYIV	GANIETYLLE	
KSRAIRQAKE	ERTFHIFYYL	LSGAG	EHLKT	DLLLEPYNKY	RFLSNGHVTI	PGQQDKDMFQ	ETMEAMR	RIMG	IPEEEQMGLL	RVISGVLQLG	NIVFKKERNT	DQASMPDNTA	AQKVSHLLGI	NVTDFTRGIL	
TPRIKVGRDY	VQKAQTKEQA	DFAIE	EALAKA	TYERMFRWLV	LRINKALDKT	KRQGASFIGI	LDIAGFE	SIFD	LNSFEQLCIN	YTNEKLQQLF	NHTMFILEQE	EYQREGIEWN	FIDFGLDLQP	CIDLIEKPAG	
PPGILALLDE	ECWFPKATDK	SFVEK	(VMQEQ	GTHPKFQKPK	QLKDKADFCI	IHYAGKVDYK	ADEWLMK	(NMD	PLNDNIATLL	HQSSDKFVSE	LWKDVDRIIG	LDQVAGMSET	ALPGAFKTRK	GMFRTVGQLY	
KEQLAKLMAT	LRNTNPNFVR	CIIPN	IHEKKA	GKLDPHLVLD	QLRCNGVLEG	IRICRQGFPN	RVVFQEF	FRQR	YEILTPNSIP	KGFMDGKQAC	VLMIKALELD	SNLYRIGQSK	VFFRAGVLAH	LEEERDLKIT	
DVIIGFQACC	RGYLARKAFA	KRQQQ	LTAMK	VLQRNCAAYL	KLRNWQWWRL	FTKVKPLLQV	SRQEEE	MAK	EEELVKVREK	QLAAENRLTE	METLQSQLMA	EKLQLQEQLQ	AETELCAEAE	ELRARLTAKK	
QELEEICHDL	EARVEEEEER	CQHLQ	TEKK	MQQNIQELEE	QLEEEESARQ	KLQLEKVTTE	AKLKKL	EEEQ	IILEDQNCKL	AKEKKLLEDR	IAEFTTNLTE	EEEKSKSLAK	LKNKHEAMIT	DLEERLRREE	
KQRQELEKTR	RKLEGDSTDL	SDQIA	AELQAQ	IAELKMQLAK	KEEELQAALA	RVEEEAAQKN	MALKKIR	RELE	SQISELQEDL	ESERASRNKA	EKQKRDLGEE	LEALKTELED	TLDTTAAQQE	LRSKREQEVN	
ILKKTLEEEA	KTHEAQIQEM	RQKHS	SQAVEE	LAEQLEQTKR	VKANLEKAKQ	TLENERGELA	NEVKVLI	LQGK	GDSEHKRKKV	EAQLQELQVK	FNEGERVRTE	LADKVTKLQV	ELDNVTGLLS	QSDSKSSKLT	
KDFSALESQL	QDTQELLQEE	NRQKL	SLSTK	LKQVEDEKNS	FREQLEEEEE	AKHNLEKQIA	TLHAQVA	1DMK	KKMEDSVGCL	ETAEEVKRKL	QKDLEGLSQR	HEEKVAAYDK	LEKTKTRLQQ	ELDDLLVDLD	
HQRQSACNLE	KKQKKFDQLL	AEEKT	ISAKY	AEERDRAEAE	AREKETKALS	LARALEEAME	QKAELER	RLNK	QFRTEMEDLM	SSKDDVGKSV	HELEKSKRAL	EQQVEEMKTQ	LEELEDELQA	TEDAKLRLEV	
NLQAMKAQFE	RDLQGKDEQS	EEKKK	QLVRQ	VREMEAELED	ERKQRSMAVA	ARKKLEMDLK	DLEAHID	SAN	KNREEAIKQL	RKLQAQMKDC	MRELDDTRTS	REEILAQAKE	NEKKLKSMEA	EMIQLQEELA	
AAERAKRQAQ	QERDELADEI	ANSSG	KGALA	LEEKRRLEAR	IAQLEEELEE	EQGNTELIND	RLKKANI	LQID	QINTDLNLER	SHAQKNENAR	QQLERQNKEL	KVKLQEMEGT	VKSKYKASIT	ALEAKIAQLE	
EQLDNETKER	QAACKQVRRT	EKKLK	DVLLQ	VDDERRNAEQ	YKDQADKAST	RLKQLKRQLE	EAEEEAÇ	QRAN	ASRRKLQREL	EDATETADAM	NREVSSLKNK	LRRGDLPFVM	PRRMARKGAG	DGSDEEVDGK	
ADGAEAKPAE															

Acknowledgements

PI : Dr. John Tomich

Dr. Takeo Iwamoto Nozomi M. Caton Deane Lehman Susan Whitaker

Past Students

Kelsey Pearson (Nursing) Jammie Layman (Law School) Kyle Steuber (Nutrisciences) Jared Wilmoth (Grad School) Marlena Birkel (Pharm School) Denise Cobb (Grad School) Macy Garcia

Current Students

Will Smith Emily Wedeman Kayla Wilkinson Cassidy Frost Dr. George Wang Dr. Sunghun Park Tzu-Yu Chen Soyoung Lim Jianteng Xu Xiaoyu Su Yanting Shen

Dr. Ying Fang Rui Guo Thomas Gallagher

External Mike Molitor (U.Wisc., Madison) Dan Abitz (GBA Engineering)

Supported by

Johnson Cancer Center Kansas State University