## Sorghum in Pet Food

T. Putarov\*, F. Cesar Sa\*, A. Carciofi\*, S. ALAVI\*\*

\*\* Kansas State University

\* Sao Paulo State University (UNESP), Brazil

## Sorghum/ Milo



Picture courtesy www.kanbou.maff.go.jp



## Sorghum protein body schematic

Outer "shell"

Interspersed glutelin matrix material coating the protein body

composed mainly of crosslinked β- and γ- kafirins

Interior composed mainly of α-kafirin

## Protein bodies and starch granules are embedded in the glutelin matrix.



**Protein bodies** 



Starch granule





## Raw Sorghum Flour





#### **Extrusion as Sustainable Processing Technology**

#### extrude \ik-'strüd\ vb

(Webster's Ninth New Collegiate Dictionary)

#### Origin – Latin *extrudere* – to thrust

- 1. to force, press or push out
- 2. to shape by forcing through die

extruder \ik - 'strüd-or \ n



## **Extrusion cooking**



#### Extrusion Cooking Versus Conventional Batch Cooking





| • | Moisture ( | (%)                    |
|---|------------|------------------------|
|   | iviolotaro | $( \ \ ) \cup ( \ \ )$ |

- Temp (°C)
- Pressure (bar)
- Mechanical Energy/ Shear
- Time (min)

| <u>Extrusion</u> | <u>Conventional</u> |
|------------------|---------------------|
| 15-35            | 70-95               |
| 150-200          | 80-120              |
| 20-100           | 1-5                 |
| Yes              | No                  |
| <1               | >30                 |

## Processed/ Cooked Sorghum

Confocal Laser Scanning Microscopy (CLSM) is a useful tool in explaining the structural changes underlying the differences in digestibility.



38 % digestibility



66 % digestibility

## Goal and Objectives

#### Goal

- Develop highly palatable premium pet food products with grain sorghum as the primary cereal ingredient
  - Based on resistant and low glycemic sorghum starch

### Objectives

- To formulate nutritionally balanced diets with red and white sorghum
- Different particle sizes, thermal versus mechanical energy input and extrusion.
- In vivo studies and palatability

# 2x3x2 Experimental Design White and Red Sorghum Varieties



## Materials & Methods Diet formulation

| Ingredient                     | Quantity (%) |
|--------------------------------|--------------|
| sorghum-based diet             |              |
| Sorghum (red or white variety) | 42.5         |
| Chicken By Product Meal        | 35.0         |
| Poultry Fat                    | 7.0          |
| Corn Gluten Meal (60% CP)      | 9.0          |
| Liquid palatant                | 3.0          |
| Beet Pulp                      | 2.0          |
| Salt                           | 0.45         |
| Potassium Chloride             | 0.35         |
| Premix Min/Vit.*               | 0.30         |
| Choline chloride               | 0.25         |
| Mold inhibitor                 | 0.10         |
| Antioxidant                    | 0.04         |

## Methods

- Batching and Mixing
- Extrusion
  - Varying Steam and Water addition
  - Wenger X-20 Single Screw Extruder
  - Wenger 4800 Series dryer

## Expansion/ Bulk Density

| Treatments               | Bulk Density (g/L) |
|--------------------------|--------------------|
| Red 1.0 / 400 / low T    | 377.40             |
| Red 1.0 / 300 / high T   | 333.93             |
| Red 0.8 / 400 / low T    | 308.87             |
| Red 0.8/ 300 / high T    | 318.25             |
| Red 0.5 / 400 / low T    | 294.13             |
| Red 0.5 / 300 / high T   | 282.25             |
| White 1.0 / 400 / low T  | 363.75             |
| White 1.0 / 300 / high T | 349.25             |
| White 0.8 / 400 / low T  | 324.15             |
| White 0.8/ 300 / high T  | 312.10             |
| White 0.5 / 400 / low T  | 301.57             |
| White 0.5 / 300 / high T | 291.10             |

### Particle size



fine grind



coarse grind

## Starch Gelatinization%

| Treatments               | Starch gelatin (%) |
|--------------------------|--------------------|
| Red 1.0 / 400 / low T    | 77.28              |
| Red 1.0 / 300 / high T   | 83.56              |
| Red 0.8 / 400 / low T    | 85.05              |
| Red 0.8/ 300 / high T    | 79.56              |
| Red 0.5 / 400 / low T    | 92.2               |
| Red 0.5 / 300 / high T   | 90.8               |
| White 1.0 / 400 / low T  | 85.31              |
| White 1.0 / 300 / high T | 83.5               |
| White 0.8 / 400 / low T  | 85.85              |
| White 0.8/ 300 / high T  | 89.45              |
| White 0.5 / 300 / high T | 93.55              |
| White 0.5 / 400 / low T  | 95.46              |

## Palatability



## In Vivo Digestibility Studies

- No significant differences between sorghum based and control (rice and corn) based diets in food intake, total apparent digestibility and fecal production/ quality
- Coarse ground recipe based products had higher concentration of colonic fermentation products (mainly propionate and butyrate); prebiotic effect?
- Post prandial glucose response higher peak concentration for control (rice and corn) than red sorghum

#### Facilities in Grain Science and Industry





Biological and Industrial Value-Added Processing (BIVAP) Facility





**Extrusion Lab** 









#### **Acknowledgements**

United Sorghum Checkoff Program