Energy analyses and use of novel grains in pet food applications

Sajid Alavi* and Aulus Carciofi**

*Kansas State University

* Sao Paulo State University

Extrusion Basics

extrude \ik-'strüd\ vb

(Webster's Ninth New Collegiate Dictionary)

Origin – Latin *extrudere* – to thrust

to force, press or push out
 to shape by forcing through die

extruder \ik – 'strüd-9r \ n

I - Energy analyses in pet food applications

 $\sum Q_{in} = \sum Q_{out} + \sum \Delta h_{reaction}$

Material Energy from
SPECIFIC HEAT/
HEAT CAPACITY, C _p (kJ/kg°C or btu/lb°F)

In general for food and feed materials:

$$C_p = C_{pw} * X_w + C_{ps} * (1-X_w)$$

where $C_{ps} \sim 1.5 \text{ kJ/kg}^{\circ}\text{C}$ and $C_{pw} \sim 4.18 \text{ kJ/kg}^{\circ}\text{C}$; and X_{m} = moisture content expressed as a fraction (wet basis or as is basis)

$$Q_r = m_r^* T_r^* C_{pr}$$
(kJ/hr)

 $\mathbf{Q}_{pc} = \mathbf{m}_{pc} \mathbf{*} \mathbf{T}_{pc} \mathbf{*} \mathbf{C}_{ppc}$ (kJ/hr)

 $Q_{wpc} = m_{wpc} * T_{wpc} * C_{pw}$ (kJ/hr)

A.4-1 Continued		
Material	H2O (wt %)	c, (kJ/kg · K)
Ice cream		
Fresh	58-66	3.27+
Frozen	58-66	1.887
Lamb	70	3.18*
Macaroni	12.5-13.5	1.84-1.88
Milk, cows'		210 / 2100
Whole	87.5	3.85
Skim	91	3.98-4.02
Olive oil		2.01**
Oranges		
Fresh	87.2	3.77†
Frozen	87.2	1.93†
Peas, air-dried	. 14	1.84
Peas, green		1.04
Fresh	74.3	3.31+
Frozen	74.3	1.76†
Pea soup		4.10
Plums	75-78	3.52
Pork		2102
Fresh	60	2.85+
Frozen	60	1 34+
Potatoes	75	3 52
Poultry		5.52
Fresh	74	3.31+
Frozen	74	1.551
Sausage, franks		+
Fresh	60	3.60+
Frozen	60	2.351
String beans		
Fresh	88.9	3 81+
Frozen	88.9	197+
Tomatoes	95	3.98+
Veal	63	3.22
Water	100	4.185**

$$\sum Q_{in} = \sum Q_{out} + \sum \Delta h_{reaction}$$

Energy analyses in pet food applications

Energy analyses in pet food applications

- Moisture (% wet basis)
- Temp (°C)
- Pressure (bar)
- Mechanical Energy/ Shear
- Thermal Energy
- Time (min)

Extrusion	Baking
15-30	40
150-200	225
20-100	1
Yes	No
Yes	Yes
<1	10-20

Mechanical and Thermal Energy Input – Impact on Dog/ Cat Palatability

increased proportionally.

(Plattner, 2005)

Mechanical and Thermal Energy Input – Impact on Dog/ Cat Palatability

(Plattner, 2005)

II - Use of Novel Grains in Pet Food Applications

Sorghum/ Milo

Sorghum protein body schematic

Interspersed glutelin matrix material coating the protein body

Outer "shell" composed mainly of crosslinked β- and γ- kafirins

Interior composed mainly of α-kafirin

Protein bodies and starch granules are embedded in the glutelin matrix.

Protein bodies

Starch granule

Glutelin protein matrix

Raw Sorghum Flour

Diet formulation

Sorghum-based diet	%
Sorghum (red or white variety)	42.5
Chicken By Product Meal	35.0
Poultry Fat	7.0
Corn Gluten Meal (60% CP)	9.0
Liquid palatant	3.0
Beet Pulp	2.0
Salt	0.45
Potassium Chloride	0.35
Premix Min/Vit.*	0.30
Choline chloride	0.25
Mold inhibitor	0.10
Antioxidant	0.04

Key Findings

Sorghum based diets appear to have lower glycemic index as compared to control corn and rice based diets and require correspondingly a more 'muted' insulin response, which is potentially more beneficial for diabetic dogs.

Blood Insulin Response in Dogs (time to peak)

Grain/	Rice	RS		WS		
Particle Size (mm)	0.8 mm	0.8mm	1.6mm	0.8mm	1.6mm	
Time to peak (min)	120.0±22	162±29	204.0±55	228.0±18	220.0±25	

Key Findings

Coarse ground sorghum based diets had potential prebiotic effect with beneficial implications on intestinal and general health of the dogs, including production of butyric acid from colonic fermentation. Prebiotic resistant starch can be generated during processing of coarse ground sorghum based diets without extra costs, at the same level (0.5 to 1.0 % dry matter basis) as commercial prebiotics.

Short-Chain Fatty Acid, mmol/g of DM

	Experimental Diets					Р
	Corn	Rice	RS1.6	WS1.6	SEIVI	value
Butyric acid	59.5 ^b	57.1 ^b	73.5 ^{ab}	84.8 ^a	2.5	0.004

Key Findings Palatability

Extrusion Processing: Technology & Commercialization Annual Short Course, K-State, Manhattan, KS 14th Edition August 7-10, 2018

Special Offering

August 06, 2018 5th Edition Annual Pet Food Workshop

Extrusion Facilities in Grain Science and Industry

Biological and Industrial Value-Added Processing (BIVAP) Facility

Acknowledgement

United Sorghum Checkoff Program

