Alternative co-products streams from grains used in pet food applications

Presented by: Greg Aldrich, PhD

Department of Grain Science and Industry

Pet Food R&D Showcase 11Oct2017

Overview

- Going with the Grain
- Pet Food Program at K-State
- Sorghum Fractions
- Next-Generation **Distillers** Grains
- Beyond Grain-Free

UNIVERSIT

Evolution of Premiumization in Pet Specialty over the Past 5 years

*Raw Alternative represents full meal of 100% Freeze-Dried, 100% Dehydrated, and Dehydrated & Freeze-Dried Mixes.

KANSAS STATE

UNIVERSITY

Segments are not mutually exclusive. Most grain-free products are also Natural. etc.

Department of Grain Science and Industry

Lange, 2017 GfK: Petfood Forum 2017

Dog and Cat Food Ingredient Database

RECIPES USING ALTERNATE INGREDIENTS IN GRAIN-FREE PET FOODS

 44% dog and 47% of cat recipes do not contain grain

 28% of dog and 22% of cat have "grain free" in the product name

Source: WATT Global Media Dog and Cat Food Ingredient Center © WATT Global Media

KANSAS STATE

UNIVERSITY

Department of Grain Science and Industry Dog and Cat Food Ingredient Center http://www.pet-ingredients.com/

But.....

- 80% of the \$30 B pet food market remains conventional ingredients
- "Value Premium" products are growing
- As any product position begins to dominate new approaches will be begin to emerge
- In 1997 there were only a few therapeutic "elimination diets" - today they seem to predominate.
- Perhaps a new era is soon to emerge....<u>Beyond</u> <u>Grain Free</u>

KSU:Pet Food Program

- Established KSU 2012
- Home: Grain Science & Industry
 - Feed Science & Mgt
- Training: Short courses, Minor, BS, MS, PhD
- Cross-campus Initiative
- ECO-DEVO support

KANSAS STATE

UNIVERSIT

Hal Ross Flour Mill & BIVAP Extrusion Lab

Department of Grain Science and Industry

KANSAS STATE

UNIVERSITY

Milling yields (%) for Sorghum used to produce experimental pet diets

ltem	Flour	Mill-feed	Germ	Loss
Milled fractions, %	68.3	27.2	1.25	3.25

Proximate analysis of red sorghum (as is) used to incorporate into the dietary treatments

Item	Whole sorghum	Flour	Mill-feed
Moisture, %	12.94	12.37	11.49
Crude Protein, %	10.50	9.68	13.40
Crude Fat, %	2.81	3.68	5.02
Crude Fiber, %	1.18	n.d.	3.56
Ash, %	1.38	1.19	2.04

Carbohydrate analysis of red sorghum used to incorporate into the dietary treatments

ltem	Whole Sorghum	Sorghum Flour	Sorghum Mill-feed
Crude Fiber, %	1.18	n.d.	3.56
ADF, %	3.80	1.40	7.70
NDF, %	6.70	1.50	16.80
TDF, %	8.80	3.20	20.0
Soluble Fiber, %	2.60	2.50	1.60
Insoluble Fiber, %	6.20	0.70	18.30
Lignin, %	n.d.	n.d.	2.90
Starch, %	61.5	67.0	43.8

KANSAS STATE Department of Grain Science university and Industry

Mean piece mass, volume, density and sectional expansion index (SEI) of kibbles from CON, WSD, FLD and MFD.

Food intake and feces collected (on DM basis) per day, number of defecations per day and fecal scores of dogs fed control (CON), whole sorghum (WSD), flour (FLD) diets and mill-feed (MFD) diets (N=12)

Item	CON	WSD	FLD	MFD	SEM	Р
Food intake, g/d	185	186	181	195	6.5	0.4818
Feces excreted, g/d	42.0 ^c	55.7 ^b	32.6 ^c	95.4 ^a	3.24	<.0001
Defecations per day	2.18 ^b	2.38 ^b	2.10 ^b	3.02 ^a	0.098	<.0001
Fecal score	3.60 ^b	3.68 ^{ab}	3.78 ^{ab}	3.92 ^a	0.068	0.0007

^{abc} Means within a row that lack a common superscript differ ($P \le 0.05$).

Apparent total tract digestibility determined by estimates of fecal output by chromic oxide of dogs fed control (CON), whole sorghum (WSD), flour (FLD) and mill feed (MFD) diets

Item	CON	WSD	FLD	MFD	SEM	Р
Dry Matter, %	83.0 ^b	81.1 ^c	86.0 ^a	65.9 ^d	0.44	<.0001
Organic Matter, %	88.0 ^b	85.8 ^b	90.7 ^a	70.6 ^c	0.34	<.0001
Energy, %	87.2 ^b	85.4 ^b	90.3 ^a	70.2 ^c	0.68	<.0001
Crude Protein, %	77.5 ^b	76.3 ^b	81.8ª	67.2 ^c	0.73	<.0001
Crude Fat, %	91.5 ^a	88.4 ^b	91.4 ^a	77.9 ^c	0.37	<.0001

^{abc} Means within a row that lack a common superscript differ ($P \le 0.05$).

Oxygen radical absorbance capacity (ORAC) of plasma collected from dogs at the end of each period fed diets based on various sorghum fractions

KANSAS STATE UNIVERSITY Department of Grain Science and Industry

USDA Agricultural Marketing Service:

Federal State Marketing Improvement Program

- Reintroducing Kansas Grains to Midwest Pet food Manufacturing ulletand Processing Markets
 - Sorghum Value Added Pet Food Focus
 - Kansas Department of Agriculture
 - Lynne Hinrichsen (KDA), Greg Aldrich (GSI), Brandi Miller (GSI), Kadri Koppel (SAC), Sarah Sexton-Bowser (CSI)
- Goal: The Reintroducing Kansas Grains to Midwest Pet food Manufacturing and Processing Markets; Sorghum Value Added Pet *Food Focus* project is a three-phase project that will provide the necessary education and awareness to assist pet food manufactures in reformulating products and retooling processes to include sorghum in pet food and snack formulations.

IVERSIT

ParticiPoll

• Navigate to: http://igp.participoll.com

 KANSAS STATE
 Department of Grain Science

 UNIVERSITY
 and Industry

Sorghum Utilization

What factor limits your inclusion of sorghum in formulations?

A) Availability/supply chain surety

B) Pricing

C) Consumer Perception

D) Lack of utilization knowledge

KANSAS STATE UNIVERSITY And Industry

Sorghum Sourcing

Would you be interested in directly sourcing grains from farmers?

A) Yes

B) No

C) Yes, if the process was facilitated

Next-Generation Distillers Grains

- Higher protein distillers grains
- Processing evaluation
- Physical properties (texture)
- Digestibility in dogs

KANSAS STATE

UNIVERSIT

• Palatability in dogs and cats

Kibbles Produced from CGM, SBM, NG-DDG

corn glutenmeal	soybean meal	distiller's dried grain
day 1	day 1	day 1
corn glutten meal	soybean meal	distiller's dried grain
day 2	day 2	day 2
corn glutten meal	soybean meal	distiller's dried grain
day 3	day 3	day 3

Department of Grain Science and Industry

KANSAS STATE

UNIVERSITY

Nutrient Composition of Experimental Ingredients Expressed on an as-is Basis.

ltem	CGM	SBM	NG-DDG
Moisture	10.17	12.33	6.71
Crude Protein	67.1	47.8	50.8
Crude Fat	1.58	1.12	3.90
Crude Fiber	n.d.	3.18	4.13
Ash	1.00	6.10	4.26

Experimental Diets Ingredient Composition to Evaluate NG-DDGs Relative to CGM And SBM.

Ingredient Name	CGM	SBM	NG-DDG
Base Ration	72.71	72.71	72.71
Corn	33.94	33.94	33.94
Chicken Meal, Low Ash	28.85	28.85	28.85
Beet Pulp	4.00	4.00	4.00
Fish Oil	0.14	0.14	0.14
Vitamins and MInerals	1.35	1.35	1.35
Natural AOX, Dry	0.04	0.04	0.04
Corn Gluten Meal	20.5	-	-
Soybean Meal	-	24.75	-
NG-DDG Flinthills (cp 49.2)	-	-	25
Corn Starch	4.50	0.25	-
Titanium Dioxide	0.40	0.40	0.40
Chromium Sesquioxide, mw 151.99	0.25	0.25	0.25
Chicken Fat**	5.00	5.00	5.00
Flavor Powder**	1.00	1.00	1.00
Natural AOX, liquid**	0.03	0.03	0.03
Totaface applied (not administered through extrus	sio 1 00.0001	100.0001	100.0001

Department of Grain Science

and Industry

KANSAS STATE

UNIVERSITY

Defecations, Scores, and Fecal Output of Dogs Fed Vegetable Protein Diets

		Diet			
ltem	CGM*	SBM*	NG-DDG*	p- Value	SEM
Daily Defecations	2.03 ^b	2.43 ^a	2.38 ^a	0.0299	0.38
Fecal Score**	3.28 ^b	3.43 ^{ab}	3.64 ^a	<.0001	1.37
Dry Fecal Weight	35.91 ^c	43.25 ^b	55.65 ^a	<.0001	4.46

abc indicates that within a row, samples with unlike letters were significantly different (p<0.05) *Corn Gluten Meal (CGM), Soybean Meal (SBM), Next Generation-Distillers Dried Grains (NG-DDG) **Feces Were Scored On A 1-5 Scale with 1 = completely liquid and 5 hard, dry Pellets.

> Department of Grain Science and Industry

KANSAS STATE

UNIVERSITY

The Effect of Vegetable Protein Source on Nutrient Digestibility by Dogs in Extruded Dry Food Kibble Calculated by Total Fecal Collection.

	<u> </u>				
		Diet			
ltom			NG-	p-	
nem	CGIVI	SDIVI	DDG*	Value	SEIVI
Dry Matter	84.25 ^a	81.07 ^b	77.27 ^c	<.0001	1.35
Organic Matter	88.09 ^a	84.53 ^b	82.25 ^c	<.0001	1.37
Crude Protein	86.90 ^a	83.36 ^b	82.92 ^b	<.0001	1.31
Crude Fat	92.15 ^a	92.09 ^a	90.54 ^b	<.0001	0.77
Crude Fiber	30.00 ^a	23.20 ^a	3.67 ^b	0.0007	15.73
Ash	37.39 ^b	42.50 ^a	38.12 ^b	0.0449	5.18

abc indicates that within a row, samples with unlike letters were significantly different (p<0.05) *Corn Gluten Meal (CGM), Soybean Meal (SBM), Next Generation-Distillers Dried Grains (NG-DDG)

The effect of vegetable protein source* on palatability assessed by dogs

n¹	IR of diet A ²
17	0.365*
13*	0.432
20	0.454
	n ¹ 17 13* 20

*p-value is less than 0.05

¹Number of first visits to bowl with diet B can be obtained by 40-n

²IR of diet A = intake (g) of diet A/total intake (g) of diets A+B

IR of diet B can be obtained by 1-IR of diet A

³Corn Gluten Meal (CGM), Soybean Meal (SBM), Next Generation-Distillers Dried Grains (NG-DDG)

The effect of vegetable protein source* on palatability assessed by cats

Diet A vs. B ³	n¹	IR of diet A ²
NG-DDG vs. CGM	22	0.606*
SBM vs. CGM	19	0.632*
SBM vs. NG-DDG	20	0.456

*p-value is less than 0.05

¹Number of first visits to bowl with diet B can be obtained by 40-n

²IR of diet A = intake (g) of diet A/total intake (g) of diets A+B

IR of diet B can be obtained by 1-IR of diet A

³Corn Gluten Meal (CGM), Soybean Meal (SBM), Next Generation-Distillers Dried Grains (NG-DDG)

Conclusions

- Markets evolve and change Ancient, alternative, and grain co-products may have a place in the next generation of pet foods
- Sorghum fractions created two potential new products for the pet market
 - Sorghum Bran rich in antioxidants and fiber
 - Sorghum Flour for specialty products
- Next-generation DDG's create a new alternative protein to soybean meal as a value-added and sustainable contribution to pet foods.

Acknowledgments

KANSAS STATE UNIVERSITY Department of Grain Science and Industry

Events & Short Courses

- 2017
 - October 12-14 Pet Food R&D Showcase Going with the Grain – KSU – Manhattan
 - December 5 Technolgia de Alimentos para Mascotas: Innovacion en Dietas Superpremuim – UABC, MX
- 2018
 - January 8-12 Pet Food Formulation for Commercial Production – KSU (IGP)
 - April 23-25 Pet Food Innovation Workshop & Petfood Forum
 - August 6-10 Pet Food Workshop & Extrusion Workshop

 KANSAS STATE
 Department of Grain Science

 UNIVERSITY
 and Industry