Using grain-based diets to maximize pet food safety

Dr. Cassie Jones Associate Professor Department of Animal Sciences & Industry jonesc@ksu.edu

Take Home Messages

- United States pet food is safe.
- The biggest opportunities for further improving pet food safety include addressing:
 - Salmonella spp.
 - Listeria monocytogenes
 - Nutrient deficiencies/toxicities
 - Aflatoxin
- Grain-based pet food is not exempt from hazards, but may be lower risk than grain-free diets.

Safety of US Pet Food

Reportable Food Registry Reports 2009-2014

5th Reportable Food Registry Annual Report, FDA, 2016

Safety of US Pet Food

Reportable Food Registry Reports 2009-2014

Pet food

Other Animal Food

Safety of US Pet Food

US Animal Food Production by Species

KANSAS STATE

2017 Alltech Global Food Survey

Opportunities to Improve Pet Food Safety

- Salmonella spp.
 - Pathways to illness
 - Animal salmonellosis through direct consumption
 - Human salmonellosis through cross-contamination when stored in the home
 - Regulatory perspective
 - Considered adulterated when contaminated and will not undergo commercial heat step or other process
 - Regardless of serotype, level of contamination

FDA Compliance Policy Guide Sec. 690.800 Salmonella in Food for Animals

Animal feeds (2002-2009)

Rank	Serotype	%	
1	Senftenberg	8.9	
2	Montevideo ^{*,b}	8.9	
3	Mbandaka	8.6	
4	Tennessee	6.2	
5	Typhimurium*	5.4	
6	I 4, [5], 1 2:i:-*	5.0	
7	Schwarzengrund*	4.7	
8	Anatum	4.3	
9	Agona*	3.5	
10	Johannesburg	3.5	

11.0 B

Plant-Derived Ingredients

10.6 D

Li et al., 2012

В

Prevalence (%)

■ 2002-2006 □ 2007-2009

Ge et al., 2013

Feed type ^a	No. of samples	Salmonella	
Animal derived	122	42 (34.4)	
Meat and bone meal	72	28 (38.9) ^A	
Poultry meal	17	3 (17.6) ^A	
Blood meal	16	5 (31.3) ^A	
Feather meal	10	1 (10)	
Fish meal	5	4 (80)	
Bone meal	2	1 (50)	
Plant derived	79	4 (5.1)	
Alfalfa meal	13	_	
Oilseed byproducts	49	4 (8.2)	
Soybean meal	31	$3(9.7)^{a}$	
Cottonseed meal	8	$1(12.5)^{a}$	
Sunflower meal	5	_	
Linseed meal	3	_	
Canola meal	2	_	
Corn products	17	_	
Corn gluten	10	_	
Corn meal	5	_	
Corn germ	1		
Hominy	1	—	
Total	201	46 (22.9)	

Jeffrey et al., 2016

Facility surfaces with Salmonella spp.

Effect of surface type on Salmonella Typhimurium

UNIVERSITY

Muckey et al., 2016

Surface × Trt P = 0.002

Dry vs. Liquid *P* < 0.0001

Effect of sanitizer on stainless steel surfaces

Dry vs. Liquid *P* < 0.0001

Effect of sanitizer on plastic surfaces

Surface × Trt P = 0.002

L. monocytogenes in pet food

Animal food types on *Listeria monocytogenes*

Nemser et al., 2014

Nutrient deficiencies/toxicities in pet food

- Vitamin D toxicity
 - Typical cause: formulation and/or production error
 - Limited impact of ingredient
- Thiamine deficiency
 - Typical cause: thermal processing, storage, preservatives, formulation and/or production error
 - High thaminase ingredients (unprocessed freshwater fish and shellfish)

Molnar et al., 2017

Mycotoxins

20 ppb for corn, peanut products, cottonseed meal, and other animal feeds and feed ingredients intended for dairy animals for animal species or uses not specified above or when the intended ingredients - Specific growing conditions (cool/wet or hot) in some - ∠U ppb for corn, peanut products, cottonseed meal, and other animal feeds and feed ingredients not known:*

KANSAS STATE

CPG Sec. 683.100 Action Levels for Aflatoxins in Animal Feeds

 Distribution of fungal genera from raw materials and finished pet food

Substrate	Strains*	genera	Frequency†
Corn grains	43	Aspergillus spp.	65
		Mucor spp.	30.4
		Eurotium spp.	4.6
Corn meal	95	Aspergillus spp.	73.7
		Penicillium spp.	10.5
		Fusarium spp.	10.5
		Acremonium spp.	4.2
		Yeast spp.	1.1
Sorghum meal	617	Aspergillus spp.	75.3
		Alternaria spp.	22.3
		Fusarium spp.	2.4
Corn meal and gluten	275	Aspergillus spp.	89
		Fusarium spp.	7.8
		Penicillium spp.	3.2
Ready pet food	19	Aspergillus spp.	89
		Yeast spp.	11

*Number of strains isolated from each substrate.

 \dagger Percentage of strains of each genus present in each substrate (strains of each genus \times 100/total strains).

Campos et al., 2008

 Distribution of Aspergillus spp. from raw materials and finished pet food

KANSAS STATE

Campos et al., 2008

 Percentage of Aspergillus flavus strains ability to produce aflatoxins

KANSAS STATE

Yoder et al., 2017

UNIVERSITY

Yoder et al., 2017

Allergens in pet food

Sources of allergens in pet foods

umbi	allergens					
	5			1	Beef	None
		Case	Dietary	2	Milk,wheat	None
		number	allergens	3	Beef wheat	Wheat
1	Beef			4	Beef, milk soybean,	Pork, soybean wheat
2	Lamb				whole egg	
3	Pork, beef, chicken,			5	Beef, soybean	Soybean
	lamb, milk, egg,	11	Chickon	6*	Beef, milk	None
	corn, soya, gluten		Oneken		Beef	Barley,carrot,
4	Beef	12	Beet			wheat
5	Beef, egg	13	Beef	3 r	Beef, chicken	Corn
		14	Gluten		commercial	
		15	Beef, gluten		ary diet	
6	Beef	16	Egg			
7	Beef, milk			0	Roof milk	None
8	Lamb	17	Gluten	9	wheat	None
1			Beef, gluten	10	Beef	None
9	Beef	18		11*	Beef, chicken	None
10	Beef, pork, lamb	19	Beef	12	Beef, milk, wheat,	None
		20	Egg, lamb		soybean, whole egg,	

Offending

food

Dog

13

Beef

None

Positive

skin test

Paterson, 1995; Jeffers et al., 1991

Take Home Messages

- United States pet food is safe.
- The biggest opportunities for further improving pet food safety include addressing:
 - Salmonella spp.
 - Listeria monocytogenes
 - Nutrient deficiencies/toxicities
 - Aflatoxin
- Grain-based pet food is not exempt from hazards, but may be lower risk than grain-free diets.

