

Antioxidants from Cereal Grain and Their Byproduct Proteins

Yonghui Li, Assistant Professor

Petfood R&D Showcase 2018 Manhattan, KS, Oct. 10

Antioxidant Classification

• Substances able to delay or inhibit oxidation reactions

Endogenous Antioxidants

- Produced in human body and living organisms
- Natural defense system to maintain healthy biological systems
- Examples: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), uric acid, glutathione (GSH)

Exogenous Antioxidants

- Dietary antioxidants
- Mainly as dietary supplements and nutraceuticals, some as food additives
- Examples: Vitamin C, Vitamin E, carotenoids, and phenolics from fruits, vegetables, cereals, etc.

Antioxidant Ingredient

>Synthetic antioxidants:

- ≻BHA, BHT, TBHQ, PG, EDTA
- ➤Tocopherols (Vitamin E), ascorbic acids (Vitamin C), citric acid...?? (natural??)
- Cheap and effective at low ppm
- Health-related safety concerns, potential toxicity

Natural antioxidants:

- Phytochemicals and herb extracts (e.g. rosemary extracts, acerola extracts, green tea extracts)
- Clean label, avoid "chemical sounding" names
- Complex processing, complicated composition
- Expensive and less effective

Demand for natural and safe antioxidants

Source: http://www.purenaturalplantextracts.com/

Antioxidant as Food/Pet Food/Feed Additives

- Processing (e.g. mixing, thermal treatment, lightening exposure, etc.) induces prooxidants (e.g. O₂, radical)
- Oxidation of ingredients leads to failures of quality features
 - ≻Alteration in <u>flavors</u>, aroma, texture, color, etc.
 - ➤Generation of toxic products
 - ➢ Reduced <u>nutritional profile</u> and <u>shelf-stability</u>
- >Antioxidants are commonly added as functional ingredient
- \$Billion growing market

Antioxidant Application Example

Stability of Bakery Products (AOM – Days of stability)

	Treatment (%)	Pastry (days of stability)	Cracker (days of stability)
Control	0	2	3
TBHQ (tert- butylhydroquinone)	.005	2	7
	.001	3	10
	.020	4	5
BHA (butylated hydroxyanisole)	.005	8	12
	.010	21	22
	.020	27	33
BHT (butylated hydroxytoluene)	.005	5	10
	.010	10	14
	.020	19	21

Cereal & Grain Protein Based Natural Antioxidants

- Increasing safety concerns over synthetic chemicals in foods
- Consumer's preference for naturally derived products
- Abundant renewable grain resource
 - Corn, 345 MMT (14.7 MMT in Kansas)
 - Wheat, 55 MMT (8.8 MMT in Kansas)
 - Sorghum, 15 MMT (7.2 MMT in Kansas)
 - Soybean, 107 MMT (4 MMT in Kansas)
- High protein content of byproducts (DDGS, soybean meal)
- Molecular structural guarantee (e.g., tyrosine, cysteine, methionine)

Antioxidant Domains in Plant Proteins

Enzymatic Hydrolysis

> Hydrolysis is necessary:

- ➢ Unfolding 3-D globular protein structures
- Degradation into shorter peptides
- Exposure of specific <u>functional groups</u> and <u>structural domains</u> that were buried within the hydrophobic core

Enzymatic hydrolysis – predominant

<u>Cleavage</u> of peptide bond by catalytic protease

Mild but highly-efficient:

Moderate temperature & pH, preserve nutritional values

- Limited side reactions, minimal damage
- ➤High reaction rate
- Easy to control, consistent products
- ► Low cost

≻Specificity

Peptide Antioxidants

Peptides **Hydrolysis** ŔН $\infty^{\mathbb{C}}$. NH₂⁺ Protein amino acid L lipid

R protein side chain group

Sources:

>Naturally-existed, e.g. glutathione, carnosine, anserine...

>Antioxidative peptides released from parent

proteins

> e.g. corn, wheat, barley, oat, pulses, milk, egg, mussel, fish, etc.

Possible mechanisms:

- \succ Stabilize free radicals, stop chain reaction
- Chelation of catalytic transition metals
- ➢ Physical barrier to hinder or minimize the access to targets

Multi-functions:

- ➤ Efficient
- ➤Cost-effective
- ➢Naturally-derived, clean label
- ➤Safe at high dosage
- Providing energy source & nutritional profile
- Functionalities (e.g. solubility, emulsifying, foaming, gelation, oil or water binding capacity)

Sorghum Background

Sorghum bicolor L. Moench is one of the oldest ancient grains

Worldwide, 5th leading cereal crop

>U.S., 3rd largest crop (behind maize and wheat)

≻~15 MMT, globally dominant

≻Sustainable crop

Biological-economic: high biomass yield, short production cycle, efficient utilization of nutrients from soil

➤Tolerance to heat, pests, drought, soil salinity and alkalinity etc.

Sorghum Grain Composition

Overall comparable to corn and millet

Carbohydrate: endosperm, 74%
Higher resistant starch than corn
Gluten free

➢ Protein: germ and endosperm, 7-15%

≻Kafirin

Storage protein (prolamin), 48-70%

>Almost exclusively localized within endosperm

>Unique properties, e.g. hydrophobicity & low-digestibility

Proven to be bio-active in vivo and in vitro

Crude fat: germ, 2-4%

Minerals, vitamins, phytochemicals: bran and germ
Higher phenolic content than other major cereals

U.S. Sorghum Utilization

>Mainly used for livestock feeds, and biofuels

➢By-products (e.g. DDGS) generated during fermentation & distillation

A premium protein source (>30%)

3%

FOOD INDUSTRY

2%

PET FOOD

- > 450k tons annually
- ≻Under-utilized
- Potential for value-adding
- (e.g. antioxidant peptides and phenolic compounds)

55%

Effect of Hydrolysis Time

Fractionation & Purification – Ultrafiltration

To study molecular weight-antioxidant activity relationship

➤To fractionate hydrolysates according to MW

Centrifugal tubes with 10k & 3k Da MW cut-off membranes

Different MW ranges: <3k, 3-10 k, >10k, Mix

Distribution: majority fell into <3k range</p>

Tested for antioxidant activity

Fractionation & Purification – Ultrafiltration

- *In vitro*: TPC, DPPH%, ORAC, FRAP, Metal chelating%
- Enhanced TPC compared to sorghum flour or sorghum protein
- Medium-sized (3-10k Da) fraction yielded a higher activity compared to other fractions and original hydrolysates

18

Oil/lipid Inhibition – in Emulsion Model Systems

Neutrase 3–10k 50 & 100 mg/ml oil vs. blank control

Emulsion stability was not significantly decreased

➢Average inhibition rate during 14-day incubation at 37 °C:

POV: **77.14 ± 13.81%** (50 mg/ml) **76.41 ± 13.81%** (100 mg/ml)

TBARS: **54.34 ± 9.78%** (50 mg/ml) **59.91 ± 13.51%** (100 mg/ml)

Characterization & Identification - Gel Filtration

➢<u>Neutrase 3-10k Da</u> showed higher activities in previous assays

To further fractionate 3-10k Da fraction based on MW profile
F1 (largest) – F4 (smallest): collected, freeze-dried, analyzed

Characterization & Identification - Gel Filtration

F2 exhibited significantly stronger TPC and DPPH%

Selected for peptide sequence identification

Characterization & Identification – RP-HPLC

➢ Gel filtration F2 Neutrase 3-10k Da − RP-HPLC peak collection

Characterization & Identification – MALDI-TOF/TOF MS

➢ RP-HPLC peaks – MALDI-TOF/TOF MS sequences identification

Opportunities for Corn Byproducts

Ultrafiltration of Corn Peptide Antioxidant

Corn Antioxidant Performance in Oil/water Emulsions

Corn Antioxidant Performance in Ground Meat Systems

Take-home Message

- Plant proteins (e.g., corn, sorghum) are potential source for antioxidant peptides production.
- Antioxidant activity depends on types and amount of proteases, reaction parameters and hydrolysate composition.
- Peptide antioxidant showed good performances in emulsion, meat, oil/fat systems.
- Ongoing research to evaluate performances in pet food and other systems

Acknowledgements

- Kansas Corn Commission for corn antioxidant research
- Grain Science & Industry department for sorghum antioxidant reserach
- KSU Biotechnology/Proteomics Core Lab for MALDI-TOF MS
- GPC and ADM for samples

