Publications
Ahmad, B.
J Exp Bot. erae326. doi:10.1093/jxb/erae326.Wojciechowska, I., Mukherjee, T., Knox-Brown, P., Hu, X., Khosla, A., Subedi, B., Ahmad, B., Mathews, G.L., Panagakis, A.A., Thompson, K.A., Peery, S.T., Szlachetko, J., Thalhammer, A., Hincha, D.K., Skirycz, A., Schrick, K. 2024. Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism. New Phytol. (published online 7-1-2024). doi:10:1111/nph.19917
Vadde, B.V.L., Russell, N.J., Bagde, S.R., Askey, B., Saint-Antoine, M.M., Brownfield, B.A., Mughal, S., Apprill, L.E., Khosla, A., Clark, F.K., Schwarz, E.M., Alseekh, S., Fernie, A.R., Singh, A., Schrick, K., Fromme, J.C., Skirycz, A., Formosa-Jordan, P., Roeder, A.H.K. 2024. The transcription factor ATML1 maintains giant cell identity by inducing synthesis of its own long-chain fatty acid-containing ligands. Preprint in bioRxiv; doi:10.1101/2024.03.14.584694.
Schrick, K., Ahmad, B., Nguyen, H.V. 2023. HD-Zip IV transcription factors: Drivers of epidermal cell fate integrate metabolic signals. Curr Opin Plant Biol. 75:e102407. doi:10.1016/j.pbi.2023.102417
Subedi, B. and Schrick, K. 2022. EYFP fusions to HD-Zip IV transcription factors enhance their stability and lead to phenotypic changes in Arabidopsis. Plant Signal Behav. 17(1):2119013. doi:10.1080/15592324.2022.2119013
Mukherjee, T., Subedi, B., Khosla, A., Begler, E.M., Stephens, P.M., Warner, A.L., Lerma-Reyes, R., Thompson, K.A., Gunewardena, S., Schrick, K. 2022. The START domain mediates Arabidopsis GLABRA2 dimerization and turnover independently of homeodomain DNA binding. Plant Physiol 190(4): 2315-2334. doi:10.1093/plphys/kiac383
Lusk, H.J., Neumann, N., Colter, M., Roth, M.R., Tamura, P, Yao, L., Shiva, S., Shah, J, Schrick, K., Durrett, T., Welti, R. 2022. Lipidomic analysis of Arabidopsis T-DNA insertion lines leads to identification and characterizationof C-terminal alterations in FATTY ACID DESATURASE 6. Plant Cell Physiol: pcac088. doi:10.1093/pcp/pcac088
Shiva, S., Samarakoon, T., Lowe, K.A., Roach, C., Vu, H.S., Colter, M., Porras, H., Hwang, C., Roth, M.R., Tamura, P., Li, M., Schrick, K., Shah, J., Wang, X, Wang, H., Welti, R. 2020. Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants 9(7): 10.3390/plants9070845.
Velazhahan, V., Glaza, P., Herrera, A.I., Prakash, O., Zolkiewski, M., Geisbrecht, B.V., Schrick, K. 2020. Dietary flavonoid fisetin binds human SUMO1 and blocks sumoylation of p53. PLOS One 15:e0234468. doi:10.1371/journal.pone.0234468.
Mukherjee., T., Lerma-Reyes, R., Thompson, K.A., Schrick, K. 2019. Making glue from seeds and gums: Working with plant-based polymers to introduce students to plant biochemistry. Biochem Mol Biol Educ. 47:468-475. doi:10.1002/bmb.21252.
Paper, J.M., Mukherjee, T., Schrick, K. 2018. Bioorthogonal click chemistry for fluorescence imaging of choline phospholipids in plants. Plant Methods 14:31.
Pook, V.G., Nair, M., Ryu, K., Arpin, J.C., Schiefelbein, J., Schrick, K., DeBolt, S. 2017. Positioning of the SCRAMBLED receptor requires UDP-Glc:sterol glucosyltransferase 80B1 in Arabidopsis roots. Sci Rep. 7(1): 5714.
Msanne, J., Chen, M., Luttgeharm, K., Bradley, A.M., Mays, E.S., Paper, J.M., Boyle, D.L., Cahoon, R.E., Schrick, K., Cahoon, E.B. 2015. Glucosylceramide is critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. Plant J. 84: 188-201.
Stucky, D.F., Arpin, J.C., Schrick, K. 2015. Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis inArabidopsis. J. Exp. Bot.66:189-201.
Schrick, K., Bruno, M., Khosla, A., Cox, P.N., Marlatt, S.A., Roque, R.A., Nguyen, H.C., He, C., Snyder, M.P., Singh, D., Yadav, G. 2014. Shared functions of plant and mammalian StAR-related lipid transfer (START) domains in modulating transcription factor activity. BMC Biology 12: 70.
Khosla, A., Paper, J.M., Boehler, A.P., Bradley, A.M., Neumann, T.R., Schrick, K. 2014. HD-Zip proteins GL2 and HDG11 have redundant functions in Arabidopsis trichomes and Gl2 activates a positive feedback loop via MYB23. Plant Cell 26: 2184-2200.
Schrick, K., DeBolt, S., Bulone, V. 2012. Deciphering the molecular functions of sterols in cellulose biosynthesis. Front Plant Sci. 3: 84. doi:10.3389/fpls.2012.00084
Schrick, K., Shiva, S., Arpin, J.C., Delimont, N., Isaac, G., Tamura, P., Welti, R. 2012. Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids47: 185-193.
Schrick, K., Cordova, C., Li, G., Murray, L., Fujioka, S. 2011. A dynamic role for sterols in embryogenesis of Pisum sativum. Phytochemistry72: 465-475.
DeBolt, S., Scheible, W.-R., Schrick, K., Auer, M., Beisson, F., Bischoff, V., Bouvier-Navé, P., Carroll, A., Hematy, K., Li, Y., Milne, J., Nair, M., Schaller, H., Zemla, M. Somerville, C. 2009. Mutations in UDP-glucose:sterol-glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defects in seeds. Plant Physiol151: 78-87.
Venkata, B.P. and Schrick, K. 2006. START domains in lipid/sterol transfer and signaling in plants. In C. Benning and J. Ohlrogge (eds.): Current Advances in Biochemistry and Cell Biology of Plant Lipids: Proceedings of the 17th International Symposium on Plant Lipids, Michigan State University Press, East Lansing, Michigan. ISPL2006, pp. 57-61.
Schrick, K., Nguyen, D., Karlowski, W.M., Mayer, K.F.X. 2004. START lipid/sterol binding domains are amplified in plants and are predominately associated with homeodomain transcription factors. Genome Biology5: R41.
Schrick, K., Fujioka, S., Takatsuto, S., Stierhof, Y.-D., Stransky, H., Yoshida, S., Jürgens, G. 2004. A link between sterol biosynthesis, the cell wall and cellulose in Arabidopsis. Plant Journal38: 227-243.
Schrick, K., Mayer, U., Martin, G., Bellini, C., Kuhnt, C., Schmidt, J., Jürgens, G. 2002. Interactions between sterol biosynthesis genes in embryonic development ofArabidopsis. Plant Journal31: 61-73. (article featured in cover illustration)
Schrick, K. and Laux, T. 2001. Zygotic Embryogenesis: The formation of an embryo from a fertilized egg. In S.S. Bhojwani & W.Y. Soh (eds.) Current Trends in the Embryology of Angiosperms, Kluwer Academic Publishers, Dordrecht, pp. 249-277.
Schrick, K. 2000. Perspective: Plant developmental biologists show their colors: Toward a virtual understanding of green development. Science´s STKE (Dec. 5).
Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., Schmidt, J., Jürgens, G. 2000. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev. 14: 1471-1485. (article featured in cover illustration)
Schrick, K., Garvik, B., Hartwell, L.H. 1997. Mating in Saccharomyces cerevisiae: The role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics147: 19-32.
Dorer, R., Pryciak, P., Schrick, K., Hartwell, L.H. 1994. The induction of cell polarity by pheromone in Saccharomyces cerevisiae. Harvey Lect.90: 95-104.
Bennetzen, J. L., Schrick, K., Springer, P.S., Brown, W.E., SanMiguel, P. 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome37: 565-576.